《玻璃瓶印花机构及传动装置机械设计课程设计.doc》由会员分享,可在线阅读,更多相关《玻璃瓶印花机构及传动装置机械设计课程设计.doc(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流玻璃瓶印花机构及传动装置机械设计课程设计.精品文档.机械设计课程设计设计计算说明书设计题目: 玻璃瓶印花机构及传动装置天津理工大学机械工程学院目 录一 课程设计的任务2二 电动机的选择4三 传动装置的总传动比和分配各级传动比5四 传动装置的运动和动力参数的计算6五 传动零件的设计计算8六 轴的设计、校核19七 滚动轴承的选择和计算29八 键的选择和计算30九 联轴器的选择30十 润滑和密封的选择30十一 箱体结构的设计31十二 设计总结34十三 参考资料35一、 课程设计的任务1设计目的:课程设计是机械设计课程重要的教学环节,是培养学生机械设
2、计能力的技术基础课。课程设计的主要目的是:(1)通过课程设计使学生综合运用机械设计课程及有关先修课程的知识,起到巩固、深化、融会贯通及扩展有关机械设计方面知识的作用,树立正确的设计思想。(2)通过课程设计的实践,培养学生分析和解决工程实际问题的能力,使学生掌握机械零件、机械传动装置或简单机械的一般设计方法和步骤。(3)提高学生的有关设计能力,如计算能力、绘图能力以及计算机辅助设计(CAD)能力等,使学生熟悉设计资料(手册、图册等)的使用,掌握经验估算等机械设计的基本技能。2设计题目:执行机构方案设计、传动装置总体设计及机构运动简图已经在机械原理课程设计中完成(详见机械原理课程设计资料,在此略)
3、,现将对传动装置进行具体设计。机械设计部分课程设计是在机械原理课程设计完成之后设计题目的延续和深入。执行机构方案设计、传动装置总体设计及机构运动简图已经在机械原理课程设计中完成,机械设计部分课程设计的任务是对其传动装置进行具体设计。设计题目:玻璃瓶印花机构及传动装置1、原始数据:分配轴转速n(r/min)50分配轴输入功率P(kw)1.1玻璃瓶单程移距(mm)115印花图章上下移距(mm)52定位压块左右移距(mm)25说明:(1)工作条件:2班制,工作环境良好,有轻微振动;(2)使用期限十年,大修期三年;(3)生产批量:小批量生产(20台);(4)带传动比i=2.53.5;(5)采用Y型电动
4、机驱动; (6) 分配轴:与减速器输出轴相连接(各执行机构的输入轴)。2、设计任务1)总体设计计算(1)选择电机型号计算所需电机功率,确定电机转速,选定电机型号;(2)计算传动装置的运动、动力参数;a.确定总传动比i,分配各级传动比;b.计算各轴转速n、转矩T;c.传动零件设计计算; d.校核中间轴的强度、轴承寿命、键强度; 2)绘制减速器装配图(草图和正式图各一张); 3)绘制零件工作图:减速器中大齿轮和中间轴零件工作图;(注:当中间轴为齿轮轴时,可仅绘一张中间轴零件工作图即可); 4)编写设计计算说明书。3、传动装置部分简图二、电动机的选择1电动机类型的选择按已知工作要求和条件选用Y系列一
5、般用途的全封闭自扇冷式笼型三相异步电动机。2 确定电动机输出功率电动机所需的输出功率 其中:-工作机分配轴的输入功率-由电动机至分配轴的传动总效率工作机的分配轴输入功率:总效率查表可得: , , , ,则 电动机所需的功率:3确定电动机转速工作机转速 确定电动机转速可选范围:V带传动常用传动比范围为,双级圆柱齿轮传动比范围为,则电动机转速可选范围为其中: 减速器传动比符合这一转速范围的同步转速为,根据容量和转速,由有关手册查出适用的电动机型号。4.确定电动机型号根据所需效率、转速,由机械设计手册 或指导书选定电动机: Y90S-2型号(Y系列)数据如下: 额定功率: (额定功率应大于计算功率)
6、满载转速:(电动机满载转速)同步转速:电动机轴径: 三、传动装置的总传动比和分配各级传动比1传动装置的总传动比2分配各级传动比根据机械设计课程设计选取,对于三角v带传动,为避免大带轮直径过大,取;则减速器的总传动比为 对于两级圆柱斜齿轮减速器,按两个大齿轮具有相近的浸油深度分配传动比,取注:高速级齿轮传动比;低速级齿轮传动比。四、传动装置的运动和动力参数的计算1计算各轴的转速轴(高速级小齿轮轴) 轴(中间轴) 轴(低速级大齿轮轴) 轴(与轴通过联轴器相连的轴) 2计算各轴的输入功率和输出功率轴: 输入功率 输出功率 轴: 输入功率 输出功率 轴 输入功率 输出功率 轴 输入功率 输出功率 3.
7、计算各轴的输入转矩和输出转矩电动机的输出转矩 轴: 输入转矩 输出转矩 轴: 输入转矩 输出转矩 轴 输入转矩 输出转矩 轴 输入转矩 输出转矩 将运动和动力参数计算结果进行整理并列于下表:轴名功率p/kw转矩T ( Nmm)转速n/rmin-1传动比i效率输入输出输入输出电机轴1.2544.217103284030.96轴1.2041.19212.14610312.025103946.674.970.98轴1.1681.15658.55910357.958103190.483.820.98轴1.1331.122216.403103214.302103500.99分配轴1.1111.10021
8、2.201103210.100103501五、传动零件的设计计算1V带传动的设计计算计算项目计算内容结果1、定V带型号和带轮直径工作情况系数由表11.5计算功率选带型号由图11.15Z型小带轮直径由表11.6取大带轮直径取大带轮转速带速传动比传动比相对误差2、计算带长求求初取中心距带长基准长度3、求中心距和包角中心距小轮包角4、求带根数带根数 取根5、求轴上载荷张紧力轴上载荷2齿轮传动的设计计算高速级齿轮校核材料选择:小齿轮45钢,调制处理,硬度229HB286HB,平均240HB 大齿轮45钢,正火处理,硬度169HB217HB,平均210HB计算项目计算内容计算结果齿面接触疲劳强度计算1、
9、初步计算2校核计算齿根弯曲疲劳强度计算 低速级齿轮校核材料选择:小齿轮45钢,调制处理,硬度229HB286HB,平均240HB 大齿轮45钢,正火处理,硬度169HB217HB,平均210HB计算项目计算内容计算结果齿面接触疲劳强度计算1、初步计算2校核计算齿根弯曲疲劳强度计算 六、轴的设计、校核(一)轴(高速轴)的结构设计1、求轴上的功率、转速和转矩由前面得,2、求作用在齿轮上的力已知高速级小齿轮的分度圆直径,则 3、初步确定轴的最小直径先初步估算轴的最小直径。选取轴的材料为45钢,调质处理。根据参考资料取=112,于是得:因为轴上应开1个键槽,所以轴径应增大5%,故,又此段轴与大带轮装配
10、,综合考虑两者要求取.4、轴的结构设计(1)拟定轴上零件的装配方案通过分析比较,选用下图所示的装配方案。(2) 据轴向定位的要求确定轴的各段直径和长度1)1-2段轴段与大带轮装配,其直径,为了满足大带轮的轴向定位要求,带轮右侧制出一轴肩故,查表知大带轮宽为,为了保证轴端挡圈只压在大带轮上而不压在轴的端面上,故1-2段的长度应比略小一些,现取。2)初步估算轴承端盖的总宽度为,根据轴承端盖的拆装及便于对轴承添加润滑脂的要求,取端盖的外端面与大带轮右端面的距离,故取3)初步选择滚动轴承。因为轴承只承受径向力的作用,故选用深沟球轴承。参照工作要求并根据,由轴承产品目录中初步选择6206承,由参考得其尺
11、寸为,故。4)取安装齿轮处的轴段4-5的直径,已知齿轮轮毂的宽度,轴承内端面至箱体内壁的距离,齿轮与箱体内壁之距离,故取,挡油盘宽度为,所以,但此时齿轮直径,齿轮受力不均匀故选用齿轮轴。5、轴上零件的周向定位带轮与轴之间的定位采用平键连接。按由参考资料查得平键截面,键槽用键槽铣刀加工长为。6、确定轴上圆角和倒角尺寸由参考资料,取轴端倒角为245。(二)轴(中间轴)的设计计算1、求轴上的功率、转速和转矩由前面得,2、求作用在齿轮上的力已知低速级小齿轮的分度圆直径,3、初步确定轴的最小直径先按参考资料初步估算轴的最小直径。选取轴的材料为45钢,调质处理。根据参考资料,取C=112,于是得:因为轴上
12、应开1个键槽,所以轴径应增大5%,故,取。4、轴的结构设计(1)拟定轴上零件的装配方案通过分析比较,选用下图所示的装配方案。(2)据轴向定位的要求确定轴的各段直径和长度1)初步选择滚动轴承。因为轴承只承受径向力的作用,故选用深沟球轴承。参照工作要求并根据,由轴承产品目录中初步选择6206轴承,由参考资料得其尺寸为,故。2)取安装齿轮处的轴段3-4的直径为,齿轮与轴承之间采用套筒定位已知齿轮2轮毂的宽度,为使套筒充分压紧齿轮3,故,取安装齿轮处的轴段2-3的直径,已知齿轮轮毂的宽度,故取。但此时齿轮直径,齿轮受力不均匀故选用齿轮轴。3)轴承内端面至箱体内壁的距离,齿轮与箱体内壁之距离,挡油盘宽度
13、为,故,。5、轴上零件的周向定位齿轮2与轴之间的定位采用平键连接。按,由参考资料查得齿轮2处平键截面,键槽用键槽铣刀加工长为。同时为了保证齿轮与轴之间配合有良好的对中性,故选择齿轮与轴之间的配合为。滚动轴承与轴之间的周向定位是用过渡配合实现的,此处选轴的直径尺寸公差为。6、确定轴上圆角和倒角尺寸由参考资料,取轴端倒角为245。(三)轴(低速轴)的设计计算1、求轴上的功率、转速和转矩由前面得,2、求作用在齿轮上的力3、初步确定轴的最小直径先按参考资料初步估算轴的最小直径。选取轴的材料为45钢,调质处理。根据参考资料,取=112,于是得:因为轴上应开2个键槽,所以轴径应增大7%,故,输入轴的最小直
14、径显然是安装联轴器处轴的直径。为了使所选的轴直径与联轴器的孔径相适应,故需同时选联轴器型号。联轴器的计算转矩,查参考资料,取,则按照计算转矩应小于联轴器公称转矩的条件,查手册,选用TL7弹性套柱销联轴器,其公称转矩,孔径为,故,半联轴器长度(Y型),半联轴器与配合的毂孔长度为。4、轴的结构设计(1)拟定轴上零件的装配方案通过分析比较,选用下图所示的装配方案。(2)据轴向定位的要求确定轴的各段直径和长度1)7-8段与联轴器相连接故,为满足联轴器的轴向定位,要求轴7-8左端需制出一轴肩故,已知,取。2)初步估算轴承端盖的总宽度为,根据轴承端盖的拆装及便于对轴承添加润滑脂的要求,取端盖的外端面与联轴
15、器左端面的距离,故取3)初步选择滚动轴承。因为轴承只承受径向力的作用,故选用深沟球轴承。参照工作要求并根据,由轴承产品目录中初步选择6211轴承,由参考资料得其尺寸为,故,轴承内端面至箱体内壁的距离,齿轮与箱体内壁之距离,挡油盘宽度为,所以,齿轮与轴承之间采用套筒定位,为使套筒充分压紧齿轮,故。取安装齿轮处的轴段2-3的直径,已知齿轮轮毂的宽度,故取。齿轮右侧靠轴肩定位,故,。5、轴上零件的周向定位齿轮、联轴器与轴之间的定位均采用平键连接。按由参考资料查得平键截面,键槽用键槽铣刀加工长为。同时为了保证联轴器与轴之间配合有良好的对中性,故选择联轴器与轴之间的配合为;同样齿轮与轴的连接用平键,带轮
16、与轴之间的配合为。滚动轴承与轴之间的周向定位是用过渡配合实现的,此处选轴的直径尺寸公差为。6、确定轴上圆角和倒角尺寸由参考资料,取轴端倒角为245。轴(中间轴)的校核中间轴的受力情况如图:(1)计算齿轮受力第一级大斜齿轮受力分析第二级大斜齿轮受力分析(2)做出弯扭矩图以轴左端为原点,经简化后各段长度分别为水平方向受力图:弯矩图:垂直方向受力图:弯矩图:合成弯矩图:轴受转矩 许用应力值 应力校正系数 当量转矩 转矩图:当量弯矩 在齿轮2中间截面处 在齿轮3中间截面处 当量弯矩图齿根圆直径 轴径 七、滚动轴承的选择和计算由前面初选6206承,其寿命计算如下:预期寿命: 已知:,轴承1上的径向载荷故
17、所以当量动载荷轴承2上的径向载荷故所以当量动载荷危险轴承为1有故 I轴上的轴承6206有效期限内安全。八、键的选择和计算(1)键的选择由前面,齿轮2与轴用键联接。(2)键的强度校核键、轴和轮毂的材料都是钢,由参考资料得许用挤压应力为,取。可得齿轮2上的键故此键能安全工作。九、联轴器的选择联轴器的计算转矩,查参考资料,取,则按照计算转矩应小于联轴器公称转矩的条件,查手册,选用TL7弹性套柱销联轴器,其公称转矩,径为,故,半联轴器长度(Y型),半联轴器与配合的毂孔长度为。十、 润滑和密封的选择1减速器的润滑(1)齿轮的润滑:除少数低速(v0.5m/s)小型减速器采用脂润滑外,绝大多数减速器的齿轮都
18、采用油润滑。本设计高速级圆周速度v12m/s,采用浸油润滑。为避免浸油润滑的搅油功耗太大及保证轮赤啮合区的充分润滑,传动件浸入油中的深度不宜太深或太浅,一般浸油深度以浸油齿高为适度,但不应小于10mm。浸油润滑的油池应保持一定的深度和贮油量。油池太浅易激起箱底沉查和油污。一般齿顶圆至油池底面的距离不应小于3050mm。为有利于散热,每传递1KW功率的需油量约为0.350.7L。齿轮减速器的润滑油黏度可按高速级齿轮的圆周速度V选取:V2.5可选用中极压齿轮油N320。 (2)轴承的润滑当减速器中浸油齿轮的圆周速度v1.52m/s时,油飞溅不起来,应选用脂润滑。2减速器的密封轴伸出处的密封:选用粘
19、圈式密封,粘圈式密封简单,价廉,主要用于脂润滑以及密封处轴颈圆周速度较低的油润滑。箱盖与箱座接合面的密封:在箱盖与箱座结合面上涂密封胶密封最为普遍,效果最好。其他部位的密封:检查孔盖板、排油螺塞、油标与箱体的接合面均需加纸封油垫或皮封油圈。十一、箱体结构的设计减速器的箱体采用铸造(HT200)制成,采用剖分式结构为了保证齿轮啮合质量,大端盖分机体采用配合.1.机体有足够的刚度在机体上加肋,外轮廓为长方形,增强了轴承座刚度2.考虑到机体内零件的润滑,密封散热。因其传动件速度小于12m/s,故采用侵油润油,同时为了避免油搅得沉渣溅起,齿顶到油池底面的距离H为40mm为保证机盖与机座连接处密封,联接
20、凸缘应有足够的宽度,联接表面应精创,其表面粗糙度为3.机体结构有良好的工艺性.铸件壁厚为8,圆角半径为R=3。机体外型简单,拔模方便.4.对附件设计A 视孔盖和窥视孔在机盖顶部开有窥视孔,能看到 传动零件啮合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,有便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M6紧固B 油塞:放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用油塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。C 油标:油标位在便于观察减速器油面及油面稳定之处
21、。油尺安置的部位不能太低,以防油进入油尺座孔而溢出.D 通气孔:由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔上安装通气器,以便达到机体内压力平衡.E 盖螺钉:启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。钉杆端部要做成圆柱形,以免破坏螺纹.F定位销:为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度.G 吊钩:在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体.减速器机体结构尺寸如下:名称符号计算公式结果箱座壁厚8箱盖壁厚8箱盖凸缘厚度12箱座凸缘厚度12箱座底凸缘厚度20地脚螺钉直径M20地脚螺钉数目查手册4
22、轴承旁联接螺栓直径M14机盖与机座联接螺栓直径M10视孔盖螺钉直径M8定位销直径8,至外机壁距离查机械课程设计指导书262016,至凸缘边缘距离查机械课程设计指导书2414外机壁至轴承座端面距离55大齿轮顶圆与内机壁距离20齿轮端面与内机壁距离14机盖,机座肋厚 轴承端盖外径92(1轴)92(2轴)140(3轴)十一 、设计总结机械设计课程设计是机械课程中一个重要的环节,通过了几个周的课程设计使我从各个方面都受到了机械设计的训练,对机械的有关各个零部件有机的结合在一起得到了深刻的认识。由于在设计方面我们没有经验,理论知识学的不牢固,在设计中难免会出现问题,如:在选择计算标准件是可能会出现误差,
23、如果是联系紧密或者循序渐进的计算误差会更大,在查表和计算上精度不够准确。课程设计运用到了很多知识,例如将理论力学,材料力学,机械设计,机械原理,互换性与测量技术等,使我对以前学习的知识有了更深刻的体会。通过课程设计,基本掌握了运用绘图软件制图的方法与思路,对计算机绘图方法有了进一步的加深,基本能绘制一些工程上的图。在设计的过程中,培养了我综合应用机械设计课程及其他课程的理论知识和应用生产实际知识解决工程实际问题的能力,在这些过程中我也深刻地认识到了自己在知识的理解和接受应用方面的不足,在今后的学习过程中我们会更加努力和团结。总之,纸上得来终觉浅,绝知此事要躬行!十二 、参考资料1 申永胜.机械
24、原理教程.北京:清华大学出版社.19992 郑文纬,吴克坚主编.机械原理(第七版).北京:高等教育出版社,19973 王三民.机械原理与设计课程设计.北京:机械工业出版社.20044 孟宪源主编.现代机构手册.北京:机械工业出版社,19945 严家杰着.基本机构分析与综合.上海:复旦大学出版社,19896 华大年,唐之伟主编.机构分析与设计.北京:纺织工业出版社,19857 华大年,华志宏,吕静平.连杆机构设计.上海:上海科学技术出版社,19958 邹慧君.机械运动方案设计手册.上海交通大学出版。9 王玉新主编,机构创新设计方法学,天津:天津大学出版社,1996年。10 罗洪量主编,机械原理课程设计指导书(第二版),北京:高等教育出版社,1986年。11 张忠秀,机械原理课程设计,机械工业出版社,2003年。