《浅谈电力系统继电保护.doc》由会员分享,可在线阅读,更多相关《浅谈电力系统继电保护.doc(40页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流浅谈电力系统继电保护.精品文档.毕业综合作业浅谈电力系统继电保护选题类型: 毕业论文 系 部: 机电系 专 业: 发电厂及电力系统 毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。作 者 签 名: 日 期: 指导教师签名
2、: 日期: 使用授权说明本人完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。作者签名: 日 期: 学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人
3、完全意识到本声明的法律后果由本人承担。作者签名: 日期: 年 月 日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权 大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。涉密论文按学校规定处理。作者签名:日期: 年 月 日导师签名: 日期: 年 月 日摘要 被誉为电力系统“静静哨兵”的继电保护,一年365天,每天24小时站岗放哨,是保证电力系统安全、稳定运行的钢铁长城。建国以来常抓不懈的继电保护正确动作率成绩显著
4、,经过科研制造、设计、运行单位几代继电保护人的共同努力,220KV以上超高压电网的继电保护装置正确动作率达到98%以上,对电力系统发生的各种故障动迅速、正确地隔离,全国没有发生过类似美国、法国、印度等国的大面积、长时间的大停电事故,保证我国电力系统安全、稳定、经济运行,继电保护功不可没,同时造就了一支工作责任心强,作风严谨、特别能战斗的继电保护队伍。随着微电子技术的迅速发展,继电保护装置发生了新飞跃,计算机技术、网络技术等高薪技术在继电保护应用技术中得到广泛采用。但继电保护的运行幻境基本未变,随着装机容量的不断扩大,电力系统网架结构的不断扩大,电压等级的不断升高,大功率、远距离输送电能的超高压
5、变、直流现代化大电网,对继电保护全方位的功能要求越来越高,发展高新技术并逐步时限科技创新、机制创新、管理创新。目前,全国还有2%左右的不正确动作,对电力系统的安全、稳定运行危害很大,尤其是超高压系统的继电保护不正确动作,旺旺使事故扩大、造成电网稳定破坏、大面积停电、设备损坏等, ,教训是沉痛的,有些不正确动作,多少年来虽然多次反事故措施,仍不断重复发生,如TV二次回路需在继电保护小室一点接地,至今仍因TV二次在生压站、继电保护小室多点接地,造成继电保护不正确动作的事故时有发生,屡禁不止。还有元器件质量、二次回路设计不当等也是继电保护不正确动作的多发病,提高继电保护正确动作率需要科研制造、设计、
6、运行单位的共同努力。关键词:继电保护目 录摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 第1章 继电保护的基础知识. . . . . . . . . . . . . . . . . . . . . . .61.1继电保护的概念及作用. . . . . . . . . . . . . . . . . . . . . . .61.2、对电力系统继电保护的基本要求. . . . . . . . . . . . . . . . . . . .61.3、主保护和后背保护的概念. . . . . . . . . .
7、 . . . . . . . . . . .7第2章 动重合闸. . . . . . . . . . . . . . . . . . . . . . . . . . . .92.1 、自动重合闸在电力系统中的作用. . . . . . . . . . . . . . . . .92.1.1、电力系统中采用重合闸的技术经济效果. . . . . . . . . . . . .92.1.2、装设重合闸的规定. . . . . . . . . . . . . . . . . . . . . .102.1.3、使用重合闸的不离影响. . . . . . . . . . . . . . . . . .
8、. .102.2、对自动成河闸装置的基本要求. . . . . . . . . . . . . . . . . . . .112.2.1、重合闸不应动作的情况. . . . . . . . . . . . . . . . . . . . .112.2.2、重合闸的启动方式. . . . . . . . . . . . . . . . . . . . . .112.2.3、自动重合闸的动作次数. . . . . . . . . . . . . . . . . . . .122.2.4、自动重合闸的复归方式. . . . . . . . . . . . . . . . . . . . .122.2
9、.5、重合闸与继电保护的配合. . . . . . . . . . . . . . . . . .122.2.6、对双侧电源线路上重合闸的要求. . . . . . . . . . . . . . . .122.2.7、闭锁重合闸. . . . . . . . . . . . . . . . . . . . . . . .132.3、重合闸动作时限的选择原则. . . . . . . . . . . . . . . . . . . .132.3.1、单侧电源线路的三相重合闸. . . . . . . . . . . . . . . . .132.3.2、双侧电源线路的三相重合闸. . . .
10、. . . . . . . . . . . . . .142.4、重合闸与继电保护的配合. . . . . . . . . . . . . . . . . . . . .14第3章 力变压器的继电保护. . . . . . . . . . . . . . . . . . . . . . .163.1、电力变压器的故障类型、不正常运行状态及其相应的保护方式. . . .163.2、变压器的瓦斯保护. . . . . . . . . . . . . . . . . . . . . . . . .18第4章 发电机的继电保护. . . . . . . . . . . . . . . . . . .
11、. . . . 204.1、发电机的故障类型、不正常运行状态及其相应的保护方式. . . . . . .204.2、发电机的纵差动保护和横差动保护. . . . . . . . . . . . . . . . .214.2.1、发电机的纵差动保护. . . . . . . . . . . . . . . . . . . . .214.2.2、发电机的横差动保护. . . . . . . . . . . . . . . . . . . . . . . .224.3、发电机的失磁保护. . . . . . . . . . . . . . . . . . . . . . . .21第4章 母线保护.
12、 . . . . . . . . . . . . . . . . . . . . . . . . . .254.1、概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . .254.2、保护范围. . . . . . . . . . . . . . . . . . . . . . . . . . .274.3、母线保护的分类. . . . . . . . . . . . . . . . . . . . . . . . . .304.4、微机母线保护. . . . . . . . . . . . . . . . . . . . . .
13、. . . .314.5、分布式母线保护. . . . . . . . . . . . . . . . . . . . . . . . . . . .324.5.1、分布式微机母线保护在电力系统自动化系统中的位置. . . . . .324.5.2、分布式微机母线保护的构成原理. . . . . . . . . . . . . . .334.5.3、分布式微机母线保护的特点. . . . . . . . . . . . . . . . .34第5章 电动机的继电保护. . . . . . . . . . . . . . . . . . . . . . .355.1、电动机的故障类型和不正常工作
14、状态. . . . . . . . . . . . . . . .355.2、电动机的保护. . . . . . . . . . . . . . . . . . . . . . . . .355.2.1、电动机的纵差保护. . . . . . . . . . . . . . . . . . . . . .355.2.2、单相接地保护. . . . . . . . . . . . . . . . . . . . . . .355.2.3、电动机的低电压保护. . . . . . . . . . . . . . . . . . . .355.3、电动机的低电压保护. . . . . . . . .
15、 . . . . . . . . . . . . .375.3.1、低电压保护的装设原则. . . . . . . . . . . . . . . . . . .375.3.2、低电压保护装置的接线. . . . . . . . . . . . . . . . . . .385.3.3、异步电动机低电压保护的整定原则. . . . . . . . . . . . . . . .385.3.4、同步电动机低电压保护的整定. . . . . . . . . . . . . . . . .395.3.5、低电压保护实现的注意事项. . . . . . . . . . . . . . . . .39第
16、6章 微机继电保护. . . . . . . . . . . . . . . . . . . . . . . . .406.1、微机继电保护的发展史. . . . . . . . . . . . . . . . . . . . . .406.2、微机继电保护的主要特点. . . . . . . . . . . . . . . . . . . .416.3、微处理器. . . . . . . . . . . . . . . . . . . . . . . . . . .426.4.微机保护软件构成. . . . . . . . . . . . . . . . . . . . . . . . .4
17、26.4.1、微机保护的软件系统配置. . . . . . . . . . . . . . . . . . .426.4.2、中断的作用. . . . . . . . . . . . . . . . . . . . . . . . .436.4.3、保护的中断服务配置. . . . . . . . . . . . . . . . . . . . .436.5、提高微机继电保护可靠性的措施. . . . . . . . . . . . . . . . .436.5.1、干扰源. . . . . . . . . . . . . . . . . . . . . . . . . . .44第7章 展望
18、与总结. . . . . . . . . . . . . . . . . . . . . . . . . .47致谢. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48参考文献. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49第1章 继电保护的基础知识1.1继电保护的概念及作用在电力系统中,除应采用各次积极措施消除或减少发生故障的可能性以外,故障一旦发生必须有效地切除故障元件,这是保证电力系统安全运行的最有效方法之一。切除故障的时间常常要
19、求小到十分之几甚至百分之几秒,时间证明只有在每个电气元件上装设保护装置才有可能满足这个要求。这种保护装置知道目前为止,大多是有单个继电器或继电器与其附属设备的组合构成的,故称为继电保护装置。在电子式静态保护装置和微机保护装置出现以后,虽然继电器已被电子元件或计算机所代替,但仍沿用此名称。在电力部门常用“继电保护”一词泛指继电保护技术或由各种继电保护装置组成的继电保护系统。继电保护装置一词指各种具体的装置。继电保护装置,就是指能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。它的基本任务是:(1)当被保护的电力系统元件发生故障时,应该由元件的继电保护装
20、置迅速准确地给距离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少电力元件本身的损坏,降低对电力系统安全供电的影响,并满足电力系统的某些特定要求(如保持电力系统的暂态稳定性等)。(2)反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同(如有无经常值班人员)发出信号,以便值班人员进行处理,或由装置自动地进行调整,或将那些继续运行而会引起事故的电气设备予以切除。反应不正常工作情况的继电保护装置容许带一定的延时动作。1.2、对电力系统继电保护的基本要求动作于跳闸的继电保护,在技术上一般应满足四个基本要求,即选择性、速动性、灵敏性和可靠性。(1
21、)选择性继电保护动作的选择性是指保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。(2)速动性快速地切除故障可以提高电力系统并联运行的稳定性,减少用户在电压降低的情况下工作的时间,以及缩小故障元件的损坏程度。因此,在发生故障时,应力求保护装置能迅速动作切除故障。 (3)灵敏性继电保护的灵敏性,是指对于其保护范围内发生故障或不正常运行状态的反应能力,保护装置的灵敏性,通常用灵敏系数来衡量,它主要决定于被保护元件和电力系统的参数和运行方式。(4)可靠性保护装置的可靠性是指在该保护装置规定的保护范围内发生了它应该动作的故障时,它不应该拒绝动作
22、,而在任何其他该保护不应该动作的情况下,则不应该误动作。1.3、主保护和后背保护的概念 1、主保护:满足系统稳定和设备安全要求,能以最快速度有选择地切除被保护设备或线路故障的保护。2、后备保护:主保护或断路器拒动时用来切除故障的保护,又分为远后备和近后备。3、远后备保护:当住保护或断路器拒动时,由相邻电力设备的保护来实现的后备保护。4、近后备保护:当主保护拒动时,由本电力设备或线路的保护来实现后备的保护;当断路器拒动时,由断路器失灵保护来实现后备保护。5、辅助保护:为补充主保护和后备保护的性能或当住保护和后备保护退出运行而增设的简单保护。第2章自动重合闸2.1 、自动重合闸在电力系统中的作用在
23、电力系统的故障中,大多数是送电线路的故障。故障可分为瞬时性故障和永久性故障。瞬时性故障:由雷电引起的绝缘子表面闪络,大风引起的碰线,通过鸟类以及树枝等物品掉落在导线上引起的短路等,在线路被继电保护迅速断开以后,电弧即行熄灭,故障点的绝缘强度重新恢复,外界物体(如树枝、鸟类等)也被电弧烧掉而消失。此时,称这类故障是“瞬时性故障”。架空线路故障大都是瞬时性故障。永久性故障:由于线路倒杆、断线、绝缘子击穿或损坏等引起的故障,在线路被断开之后,它们仍然是存在的。这时,即使再合上电源,由于故障依然存在,线路还要被继电保护再次断开,因而就不能回复正常的供电。由于送点线路上的故障具有以上的性质,因此,在线路
24、被断开以后再进行一次合闸,就有可能大大提高供电的可靠性。由运行人员手动进行合闸,固然也能够实现上述作用,但由于停电时间过长,用户电动机多数已经停转,因此,其效果就不显著。为此在电力系统中采用了自动重合闸(AR),即当断路器跳闸之后,能够自动地将断路器重新合闸的装置。在线路上装设重合闸装置以后,由于它并不能够判断是瞬时性故障还是永久性故障,因此,在重合以后可能成功,也可能不成功。用重合成功的次数与总动作次数之比来表示重合闸的成功率,根据运行资料的统计,成功率一般在60%90%之间。在微机保护中重合闸装置应用自适应原理可在重合之前先判断是瞬时性故障还是永久性故障,可以大大提高重合闸的成功率。2.1
25、.1、电力系统中采用重合闸的技术经济效果(1)大大提高供电的可靠性,减少线路停电的次数,特别是对单侧电源的单回线路有为显著;(2)在高压输电线路上采用重合闸,还可以提高电力系统并列运行的稳定性。(3)在电网的设计与建设过程中,有些情况下由于考虑重合闸的作用,即可以暂缓架设双回线路,以节约投资;(4)对断路器本身由于机构不良或继电保护误动作而引起的误跳闸,也能起纠正的作用。 对1KV及以上的架空线路和电缆与架空的混合线路,当某上有断路器时,就应该设自动重合闸装置;在用高压熔断器保护的线路上,一般采用自动自动重合熔断器;此外,在供电给地区负荷的电力变压器上,以及发电厂和变电站的母线上,必要时也可以
26、装设自动重合装置。2.1.2、装设重合闸的规定(1)3KV及以上的架空线路和电缆与架空混合线路,在具有断路器的条件下,如用电设备允许且无备用电源自动投入时,应装设自动重合闸装置。(2)旁路断路器和兼作旁路的母线联络断路器或分断断路器,应装设自动重合闸装置。(3)低压侧不带电源的降压变压器,可装设自用重合闸装置。(4)必要时,母线故障可采用母线自动重合闸装置。2.1.3、使用重合闸的不离影响 在采用重合闸以后,当重合于永久性故障上时,它也将带来一些不利的影响,如: (1)使电力系统又一次受到故障的冲击,并可能降低系统并列运行的稳定性。 (2)使断路器的工作条件变得更加严重,因为它要在很短的时间内
27、,连续切断两次短路电流。这种情况对于油断路器必须加以考虑,因为在第一次跳闸时,由于电弧的作用,已使油的绝缘强度降低,在重合后第二次跳闸时,是在绝缘已经降低的不利条件下进行的,因此,油断路器在采用了重合闸以后,其遮断容量也要有不同程度的降低。 在短路容量比较大的电力系统中,上述不利条件往往限制了重合闸的使用。因此,能够判断是瞬时性故障或永久性故障,以及检测消弧情况的自适应重合闸的研究具有重要意义。目前这一技术已趋于成熟已开始在电力系统中试运行。例如在中性点经消弧线圈绝地的电网中,用危机自适应重合闸即可根据消弧线圈中电流的大小判断弧光熄灭的情况,从而自动调整重合闸时间。2.2、对自动成河闸装置的基
28、本要求2.2.1、重合闸不应动作的情况(1)有值班人员手动操作或通过遥控装置将断路器断开时。(2)手动投入断路器,由于线路上有故障,而随即被继电保护将其断开时。因为在这种情况下,故障是属于永久性的,它可能是由于检修质量不合格、隐患未消除或者接地线忘记拆除等原因所产生,因此再重合一次也不可能成功。(3)除上述条件外,当断路器由继电保护动作或其他原因而跳闸后,重合闸均应动作,使断路器重新合闸。2.2.2、重合闸的启动方式 为了能够满足第1项所提出的要求,应优先采用由控制开关的位置与断路器位置不对应的原则来启动重合闸,即当控制开关在合闸位置而断路器实际上在断开位置的情况下,使重合闸起动,这样就可以保
29、证不论是任何原因使断路器跳闸以后,都可以进行一次重合重合。当用手动操作控制开关使断路器跳闸以后,控制开关与断路器的位置仍然是对应的。因此,重合闸就不会启动。在某些情况下,当利用保护装置来起动重合闸时,由于保护装置动作快,可能使重合闸来不及启动,因此,必须采取措施(如用自保持回路、记忆回路等),来保证重合闸的可靠动作。2.2.3、自动重合闸的动作次数自动重合闸装置的动作次数应符合预先的规定。如一次式重合闸就应该只动作一次,当重合于永久性故障而再次跳闸以后,就不应该再动作;对二次式重合闸就应该能够动作两次,当第二次重合于永久性故障而跳闸以后,它不应该再动作。在任何情况下,例如装置本身的元件损坏,继
30、电器触电黏住或拒动等,重合闸均不应该使断路器多次地重合到永久故障上去。2.2.4、自动重合闸的复归方式自动重合闸在动作以后,应能自动复归,准备好下一次再动作。但对10KV及以下电压的线路,如当地有值班人员时,为简化重合闸的实现,也可以采用手动复归的方式。采用手动复归的缺点是,当重合闸动作后,在值班人员未及时复归以前,而又一次发生故障时,重合闸将拒绝动作,这雷雨季节,雷害活动较多的地方尤其可能发生。2.2.5、重合闸与继电保护的配合自动重合闸装置应有可能在重合闸以前或重合闸以后加速继电保护的动作,以便更好地和继电保护相配合,加速故障的切除。如用控制开关手动合闸并合于永久性故障上时,也宜于采用加速
31、继电保护动作的措施,因为这种情况与实现重合闸后加速的要求是完全一样的。当采用重合闸后加速保护时,如果合闸瞬间所产生的冲击电流或断路器三相触头不同时合闸所产生的零序电流有可能引起继电保护误动作时,则应采取措施(如适当增加延迟)予以防止。2.2.6、对双侧电源线路上重合闸的要求 在双侧电源的线路上实现重合闸时两侧电源间的同步问题,并满足所提出的要求。2.2.7、闭锁重合闸 (1)自动重合闸装置应具有接收外来闭锁信号的功能。 (2)当断路器处于不正常状态(例如操作机构中使用的气压、降低液态等)而不允许实现合闸时,应将自动重合闸装置闭锁。2.3、重合闸动作时限的选择原则2.3.1、单侧电源线路的三相重
32、合闸 为了尽可能缩短电源中断的时间,重合闸的动作时限原则上应越短越好。因为电源中断后,电动机的转速急剧下降,电动机被其负荷所制动,当重合闸成功回复供电以后,很多电动机要自起动。此时由于自起动电流很大,往往会引起电网内电压的降低,因而又造成自起动的困难或拖延其恢复正常工作的时间。电源中断的时间越长则影响就越严重。 重合闸带有时限的原因:(1)在断路器跳闸后,要使故障点的电弧熄灭并使周围介质恢复绝缘强度,是需要一定时间的,必须在这个时间以后进行合闸才有可能成功。在考虑上述时间内,还必须计及符合电动机向故障点反馈电流所产生的影响,因为它是使绝缘强度恢复最慢的因素。(2)在断路器动作跳闸以后,其触头周
33、围绝缘强度的恢复以及消弧室重新充满油需要一定的时间。同时其操作机构恢复原状准备好再次动作也需要一定的时间。重合闸必须在这个时间以后才能向断路器发出合闸脉冲,否则,如重合在永久性故障上,就可能发生断路器爆炸的严重事故。因此,重合闸的动作时限应在满足以上两个要求的前提下,力求缩短。如果重合闸是利用继电保护来起动,则其动作时限还应该加上断路器跳闸时间。根据我国一些电力系统的运行经验,整定时间为1S为宜。2.3.2、双侧电源线路的三相重合闸其时限除满足以上要求我外,还应考虑线路两侧继电保护以不同时限切除故障的可能性。从最不利的情况出发,每一侧的重合闸都应该以本侧先跳闸而对侧后跳闸来作为考虑整定时间的依
34、据。2.4、重合闸与继电保护的配合为了能尽量利用重合闸所提供的条件以加速切除故障,继电保护与之配合时,一般采用如下两种方式1、 重合闸前加速保护重合闸前加速保护一般又简称为“前加速”。 重合闸前加速保护方式一般用于具有几段串联的辐射形线路中,重合闸装置仅装在靠近电源的一段线路上。当线路上(包括相邻线路及以后的线路)发生故障时,靠近电源侧的保护首先无选择性地瞬时动作于跳闸,而后再靠重合闸来纠正这种非选择性动作。采用前加速的优点:(1) 能够快速地切除瞬时性故障;(2) 可能使瞬时性故障来不及发展成永久性故障,从而提高重合闸的成功率;(3) 能保证发电厂和重要变电站的母线电压在0。60。7倍额定电
35、压以上,从而保证电厂和重要用户的电能质量;(4) 使用设备少,只需装设一套重合闸装置,简单、经济。前加速的缺点:(1) 断路器工作条件恶劣,动作次数较多:(2) 重合于永久性故障时,故障切除的时间可能较长:(3)如果重合闸拒绝合闸,则将扩大停电范围。甚至会导致在最末一级上的用户在切除故障前全部停电。前加速保护主要用于35KV以下由发电厂或重要变电站引出的直配线路上,以便快速切除故障,保证母线电压。在这些线路上一般只装设简单的线路保护。2、重合闸后加速保护 重合闸后加速保护一般又称为“后加速”。 当线路发生故障后,保护有选择性的动作切除故障,重合闸进行一次重合以恢复供电。若重合于永久性故障时,保
36、护装置即不带时限无选择性的动作断开断路器,这种方式称为重合闸后加速。后加速保护的优点是:(1)第一次是有选择性的切除故障,不会扩大停电范围,特别是在重要的高压电网中,一般不允许保护无选择性的动作而后以重合闸来纠正。(2)保证了永久性故障能瞬时切除,并仍然是有选择性的。(3)和前加速相比,使用中不受网络结构和负荷条件的限制,一般说来是有利而无害的。后加速的缺点:(1) 每个断路器上都需要装设一套重合闸,与前加速相比较为复杂; (2) 第一次切除故障可能带有延迟。“后加速”的配合方式广泛应用于35KV以上的网络及对重要负荷供电线路上。在这些线路上一般都装有性能比较完善的保护装置。第3章 电力变压器
37、的继电保护3.1、电力变压器的故障类型、不正常运行状态及其相应的保护方式电力变压器是电力系统中十分重要的供电元件,它的故障将对供电可靠性和系统的正常运行带来严重的影响。同时大容量的电力变压器也是十分重要的元件,因此,必须根据变压器的容量和重要成都考虑装设性能良好,工作可靠的继电保护装置。变压器的内部故障可以分为油箱内和油箱外故障两种。油箱内的故障包括绕组的相间短路、接地短路,匝间短路以及贴心的烧损等,对变压器来讲,这些故障都是十分危险的,因为油箱内故障时产生的电弧,将引起绝缘物质的剧烈汽化,从而可能引起爆炸,因此,这些故障应该尽快加以切除。油箱外的故障,主要是套管和引出线上发生相间短路和接地短
38、路。变压器的不正常运行状态主要有:由于变压器外部相间短路引起的过电流和外部接地短路引起的过电流和中性点过电压:由于负荷超过额定容量引起的过负荷以及由于漏油引起的油面降低。此外,对大容量变压器,由于其额定工作时的磁通密度相当接近于铁心的饱和磁通密度,因此在过电压或低频率等差异常运行状态下,还会发生变压器的过励磁故障。根据上述故障类型和不正常运行状态,对变压器应装设下列保护。1、瓦斯保护对变压器油箱内的各种故障以及油面的降低,应装设瓦斯保护,它反应于油箱内部所产生的气体或油流而动作。其中轻瓦斯保护动作于信号,重瓦斯动作于跳开变压器各电源侧的断路器。应装设瓦斯保护的变压器容量界限是:800KVA及以
39、上的油浸式变压器和400KVA及以上的车间内油浸式变压器。同样对带负荷调压的油浸式变压器的调压装置,也应装设瓦斯保护。2、纵差动保护或电流速断保护对变压器绕组、套管及引出线上的故障,应根据容量的不同,装设纵差动保护或电流速断保护。纵差动保护适用于:并列运行的变压器,容量为6300KVA以上时;单独运行的变压器,容量为10000KVA以上时;发电厂厂用工作变压器和工业企业中的重要变压器,容量为6300KVA以上时。电流速断保护用于10000KVA以下的变压器,且其过电流保护的时限大于0。5s时。对2000KVA以上的变压器,当电流速断保护的灵敏性不能满足要求时,也应装设纵差动保护。对高压侧电压为
40、330KV及以上的变压器,可装设双差动保护。上述各保护动作后,均应跳开变压器各电源侧的断路器。3、外部相同短路时,应采用的保护对于外部相间相间短路引起的变压器过电流,应采用下列保护作为后备保护。(1)过电流保护,一般用于降压变压器,保护装置的整定值应考虑事故状态下可能出现的过负荷电流;(2)复合电压起动的过电流保护,一般用于容量为63MVA及以上的升压变压器;(3)负序电流及单相式低电压起动的过电流保护,一般用于容量为63KVA及以上的升压变压器;(4)阻抗保护,对于升压变压器和系统联络变压器,当采用第(2)、(3)的保护不能满足灵敏性和选择性要求时,可采用阻抗保护。对500KV系统联络变压器
41、高、中压侧均应装设阻抗保护。保护可带两段时限,以较短的时限用于缩小故障影响范围;较长的时限用于断开变压器各侧断路器。4、外部接地短路时,应采用的保护对中性点直接接地电力网内,由外部接地短路引起电流时,如变压器中性点接地运行,应装设零序电流保护。零序电流保护可由两段组成,每段可各带两个时限,并均以较短的时限动作于缩小故障影响范围,或动作与本侧断路器,以较长的时限动作于断开变压器各侧断路器。对自耦变压器和高、中压侧中性点都直接接地的三绕组变压器,当有选择性要求时,应增设零序方向元件。当电力网中部分变压器中性点接地运行,为防止发生接地短路时,中性点接地的变压器跳开后,中性点不接地的变压器(低压侧有电
42、源)仍带接地故障继续运行,应根据具体情况,装设专用的保护装置,如零序过电压保护,中性点装放电间隙加零序电流保护等。5、过负荷保护对400KVA以上的变压器,当数台并列运行,或单独运行并作为其他负荷的备用电源时,应根据可能过负荷的情况,装设过负荷保护。过负荷保护接于一相电流上,并延时作用于信号。对无经常值班人员的变电所,必要时过负荷保护可动作于自动减负荷或跳闸。6、过励磁保护高压侧电压为500KV及以上的变压器,对频率降低和电压升高而引起的变压器励磁电流的升高,应装设过励磁保护。在变压器允许的过励磁范围内,保护作用于信号,当过励磁超过允许值时,可动作于跳闸。过励磁保护反应于实际工作磁密和额定工作
43、磁密之比(称为励磁倍数)而动作。7、其他保护对变压器温度及油箱内压力升高和冷却系统故障,应按现行变压器标准的要求,装设可作用于信号或动作于跳闸的装置。3.2、变压器的瓦斯保护当在变压器油箱内部发生故障时,由于故障点电流和电弧的作用,将使变压器油及其他绝缘材料因局部受热而分解产生气体,因气体比较轻,它们将从油箱向油枕的上部。当故障严重时,油会迅速膨胀并产生大量的气体,此时将有剧烈的气味夹杂着油流向油枕的上部。利用油箱内部故障时的这一特点,可以构成反应于上述气体而动作的保护装置,成为瓦斯保护。气体继电器是构成瓦斯保护的主要元件,它安装在油箱与热枕之间的连接管道上,油箱内产生的气体必须通过气体继电器
44、才能流向热枕。为了不妨碍气体的流通,变压器安装时应使顶盖沿气体继电器的方向与水平具有1%1。5%的升高坡度,通往继电器的连接管具有2%4%的升高坡度。瓦斯保护的主要优点是动作迅速、灵敏度高、安装接线简单、能反应油箱内部发生的各种故障。其缺点则是不能反应油箱以外的套管及引出线等部位上发生的故障。因此瓦斯保护可作为变压器的主保护之一,与纵差动保护相互配合、相互补充,实现快速而灵敏地切除变压器油箱内外及引出线上发生的各种故障。第4章 发电机的继电保护4.1、发电机的故障类型、不正常运行状态及其相应的保护方式发电机的安全运行对保证电力系统的正常工作和电能质量起着决定性的作用,同时发电机本身也是一个十分
45、贵重的电气元件。因此,应该针对各种不同的故障和不正常运行状态,装设性能完善的继电保护装置。发电机的故障类型主要有:定子绕组相间短路;定子绕组一相匝间短路;定子绕组单相接地;转子绕组一点接地或两点接地;转子励磁回路励磁电流异常下降或完全消失。发电机的不正常运行状态有:由于外部短路引起的定子绕组过电流;由于负荷超过发电机额定容量而引起的三相对称过负荷;由于外部短路不对称短路或不对称负荷而引起的发电机负序过电流或过负荷;由于突然甩负荷而引起的定子绕组过电压;由于励磁回路故障或强励时间过长而引起的转子绕组过负荷;由于汽轮机主汽门突然关闭而引起的发电机逆功率等。针对上述故障类型及不正常运行状态,按规程规
46、定,发电机应装设以下继电保护装置:(1)对1MW以上发电机的定子绕组及其引出线的相间短路,应装设纵联差动保护。(2)对直接连于母线的发电机定子单相接地故障,当发电机电压网络的接地电容大于或等于5A时,应装设动作于跳闸的零序电流保护;当接地电容电流大于5A时,则装设作用于信号的接地保护。对于发电机变压器组,一般在发电机电压侧装设作用于信号的接地保护;当发电机电压侧接地电容电流大于5A时,应装设消弧线圈。容量在100MW及以上的发电机,应装设保护区为100%的定子接地保护。(3)对于发电机定子绕组的匝间短路,当绕组接成星形且每相中有引出的并联支路时,应装设单继电器式的横联差动保护。(4)对于发电机
47、外部短路引起的过电流,可采用下列保护方式:1)负序过电流及单相式低起动过电流保护,一般用于50MW及以上的发电机上装设负序电流保护。2)负荷电压起动的过电流保护;3)过电流保护,用于1MW以下的小发电机。(5)对于由不对称负荷或外部短路而引起的负序过电流,一般在50MW及以上的发电机上装设负序电流保护。(6)对于由对称负荷引起的发电机定子绕组过电流,应装设接于一相电流的过负荷保护。(7)对于水轮发电机定子绕组过电压,应装设带延时的过电压保护。(8)对于发电机励磁回路的接线故障: 1)水轮发电机一般装设一点接地保护,小容量机组可采用定期检测装置; 2)对汽轮发电机励磁回路的一点接地,一般采用定期检测装置,对大容量机组则可以装设一点接地保护。对两点接地故障,应装设两点接地保护,在励磁回路发生一点接地后投入。(9)对于发电机励磁消失的故障,在发电机不允许失磁运行时,应在自动