《普通车床PLC控制系统设计课程设计说明.doc》由会员分享,可在线阅读,更多相关《普通车床PLC控制系统设计课程设计说明.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流普通车床PLC控制系统设计课程设计说明.精品文档.河南科技大学课 程 设 计 说 明 书课程名称 电气控制与PLC应用技术 题 目 C650普通车床PLC控制系统设计 学 院 车辆与动力工程学院 班 级 农电101 日 期 2013年7月5日 C650普通车床PLC控制系统设计摘 要本次设计介绍了C650卧式车床电气控制系统的工作原理及其运动形式,编写了PLC控制梯形图程序和指令表程序。利用PLC控制系统,实现了车床启动、正转反转、反接制动、刀架快速移动、冷却泵工作等一些列功能,改由PLC控制后,其控制系统大大的简单化,并且维修方便,易于检查
2、,节省大量的继电器元件,机床的各项性能有了很大的改善,工作效率有了明显提高。另外,本设计具有性能可靠,外围电路简单等优点,设计思路清晰,程序简单明了。C650车床控制系统利用了西门子STC-200系列PLC的特点,对按扭、开关等其他一些输入/输出点进行控制,实现了车床过程的自动化。此外PLC 可以重复使用,降低了测试经费。它的灵活性、操作方便性也方便测试者随时输入、调试和修改控制程序。PLC 又设有串行接口,方便地与计算机进行连接,组成测控系统,给系统的维护和使用带来了很大方便。关键词 :卧式车床;PLC控制;目 录第一章 绪论11.1 C650型卧式车床简介11.2 PLC在电气控制系统中的
3、应用31.3 C650型卧式车床发展趋势4第二章 系统总体方案设计62.1 C650卧式车床控制要求62.2 C650卧式车床控制原理分析62.2.1主电路分析62.2.2主电动机点动控制分析72.2.3主电动机的正反转控制分析72.2.4主电动机反接制动分析82.2.5快速电动机与冷却泵电动机控制分析.82.3 辅助电路分析92.3.1照明电路和控制电源分析92.3.2电流表保护电路10第三章 PLC控制系统的设计113.1 PLC的选型113.2 I/O地址的分配123.3 I/O接线图133.4 PLC控制原理图143.5 元器件清单15第四章 系统软件设计164.1 控制系统的梯形图程
4、序设计164.2 PLC控制程序流程图如下18第五章 系统调试195.1 硬件检查195.2 系统综合调试19第六章 结论21参考文献22第一章 绪论本设计采用可编程控制器代替继电器对机床进行控制,因为可编程控制器组成的控制系统在设计、安装、调试和维修等方面,不仅减少了工作量,而且减少了开支,缩减了成本,效益更高。通过使用PLC改造该机床电气系统后,去掉了原机床的中间继电器,时间继电器等等,使线路简化,维修方便。同时要达到的要求有: (1)车床正反向工作及反接制动;(2)主电动机点动;(3)刀架快速移动及冷却泵工作;(4)对主电动机进行电流监控;设计PLC控制系统首先要对控制要求进行分析,选择
5、最佳的系统方案,然后对系统硬件设计进行选择,比如:交流接触器;中间继电器;保护电器等。最关键的是选择合适的PLC,对I/O地址分配,再进行梯形图设计。1.1 C650型卧式车床简介C650卧式车床属于中型车床,可加工的最大工件回转直径为1020mm,最大工件长度为30000mm,它主要由床身、主轴变速箱、尾座、进给箱、丝杆、光杆、刀架和溜板箱等组成,如图1-1。图1-1 C650卧式车床结构图C650车床由主轴运动和刀具进给运动完成切削加工,车床的主轴、冷却泵、刀架快速移动均由三相异步电动机拖动。车床有三种运动形式:车削加工的主运动是主轴通过卡盘或者鸡心夹头带动工件的旋转运动,它承受车削加工时
6、的主要切削功率;进给运动是溜板带动刀架的纵向或横向运动;辅助运动为溜板箱的快速移动,尾座的移动和工件的夹紧与放松。主轴的旋转运动由主电动机,经传动机构实现。机床车削加工时,要求车床主轴能在较大范围内变速。通常根据被加工零件的材料性能、零件尺寸精度要求、车刀材料、冷却条件及加工方式等来选择切削速度,采用机械变速方法。车床纵、横两个方向的进给运动由主轴变速箱的输出轴,经挂轮箱、进给箱、光杆传入溜板箱而获得,其运动方式有手动与机动两种。其工作过程过程如下: (1) 正常车削加工时一般不要求反转,但在加工螺纹时,为保证螺纹的加工质量,为避免乱扣,加工完毕后要求反转退刀,且工件旋转速度与刀具的移动速度之
7、间保持严格的比例关系。因此,C650卧式车床溜板箱与主轴变速箱之间通过齿轮传动来连接,由同一台电动机拖动。(2) C650卧式车床通过主电动机的正、反转来实现主轴的正、反转,当主轴反转时,刀架也跟着后退。(3) 电流表A经电流互感器TA接在主电动机M1的动力回路上,用来监测电动机的负载情况。(4) 车削加工近似于恒功率负载,主电动机M1通常选用普通笼型异步电动机(功率为30KW),完成主轴运动和刀具进给运动的驱动。M1电动机采用直接启动的方式,可正反两个方向旋转,为加工方便,还具有点动功能。由于加工的工件比较大,加工时其转动惯量也比较大,需停车时不易立即停止转动,必须有停车制动动能,C650车
8、床的正反停车采用速度继电器控制电源的反接制动,以提高生产效率。(5) 车削加工中,为防止刀具和工件的温度过高,延长刀具使用寿命,提高加工质量,车床附有一台单方向旋转的冷却泵电动机M2,功率为0.18KW。(6) C650卧式车床的床身较长,为了提高生产效率、减轻工人的劳动强度,专门设置了一台功率为2.2KW的电动机来拖动溜板箱快速移动。电动机可根据使用需要,随时手动控制起停。(7) C650在进行车削加工时,因被加工的工件材料、形状、大小、性质及工艺要求不同,且使用的刀具也不同,所以要求切削速度也不同,这就要求主轴有较大的调速范围。车床大多采用机械方法调速,变换主轴箱外的手柄位置,可改变主轴的
9、转速。1.2 PLC在电气控制系统中的应用PLC 是先进的工业化国家通用的标准工业控制设备,在现代工业自动化控制中是最值得重视的先进控制技术,现在已经成为现代工业控制三大技术支柱(PLC,CAD/CAM,ROBOT) 之一,可编程逻辑控制器是专为在工业环境下应用而设计的一种数字运算操作电子系统。它采用了可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字量、模拟量的输入和输出,控制各种类型的机械或生产过程。PLC 是微机技术与传统的继电接触控制技术相结合的产物,它克服了继电接触控制系统中的机械触点的接线复杂、可靠性低、功耗高、通用性和灵活性差的
10、缺点,充分利用了微处理器的优点。用PLC 控制改造其继电器控制电路, 可靠性高、逻辑功能强、体积小,降低了设备故障率, 提高了设备使用效率, 运行效果良好。随着我国电力体制改革的深化,电力市场竞争将更加激烈,降低资源损耗和提高管理效益成为各发电企业的迫切需求。为此,对火电厂辅助车间自动控制水平提出了更高的要求。经过科技人员的不断引进、开发、研究, 我国大型火电站的辅助系统(输煤、化水、除灰、除渣、燃油泵房、循环水泵房等)已由继电器控制过渡到完全由PLC 监控。 PLC 是一种专为工业生产自动化控制设计的,一般而言,无须任何保护措施就可以直接在工业环境中使用。然而,当生产环境过于恶劣,电磁干扰特
11、别强烈,或安装使用不当,就可能造成程序错误或运算错误,从而产生误输入并引起误输出,这将会造成设备的失控和误动作,从而不能保证PLC 的正常运行。要提高PLC 控制系统可靠性,一方面生产厂家要提高PLC 的抗干扰能力;另一方面,要在设计、安装和使用维护中引起高度重视,多方配合,减少及消除干扰对PLC 的影响。在新的时代,PLC 会有更大的发展,产品的品种会更丰富、规格更齐全,通过完美的人机界面、完备的通信设备、成熟的现场总线通信能力会更好地适应各种工业控制场合的需求,PLC 作为自动化控制网络和国际通用网络的重要组成部分,将在我国发电厂的电气自动化建设中发挥越来越大的作用。1.3 C650型卧式
12、车床发展趋势数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,它对国计民生的一些重要行业(IT、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。当前数控车床呈现以下发展趋势。 1. 高速、高精密化高速、精密是机床发展永恒的目标。随着科学技术突飞猛进的发展,机电产品更新换代速度加快,对零件加工的精度和表面质量的要求也愈来愈高。为满足这个复杂多变市场的需求,当前机床正向高速切削、干切削和准干切削方向发展,加工精度也在不断地提高。另一方面,电主轴和直线电机的成功应用,陶瓷滚珠轴承、
13、高精度大导程空心内冷和滚珠螺母强冷的低温高速滚珠丝杠副及带滚珠保持器的直线导轨副等机床功能部件的面市,也为机床向高速、精密发展创造了条件。 数控车床采用电主轴,取消了皮带、带轮和齿轮等环节,大大减少了主传动的转动惯量,提高了主轴动态响应速度和工作精度,彻底解决了主轴高速运转时皮带和带轮等传动的振动和噪声问题。采用电主轴结构可使主轴转速达到10000r/min以上。 直线电机驱动速度高,加减速特性好,有优越的响应特性和跟随精度。用直线电机作伺服驱动,省去了滚珠丝杠这一中间传动环节,消除了传动间隙(包括反向间隙),运动惯量小,系统刚性好,在高速下能精密定位,从而极大地提高了伺服精度。 直线滚动导轨
14、副,由于其具有各向间隙为零和非常小的滚动摩擦,磨损小,发热可忽略不计,有非常好的热稳定性,提高了全程的定位精度和重复定位精度。通过直线电机和直线滚动导轨副的应用,使机床的快速移动速度由目前的1020m/mim提高到6080m/min,甚至高达120m/min。 2. 高可靠性 数控机床的可靠性是数控机床产品质量的一项关键性指标。数控机床能否发挥其高性能、高精度和高效率,并获得良好的效益,关键取决于其可靠性的高低。 3. 数控车床设计CAD化、结构设计模块化。随着计算机应用的普及及软件技术的发展,CAD技术得到了广泛发展。CAD不仅可以替代人工完成繁琐的绘图工作,更重要的是可以进行设计方案选择和
15、大件整机的静、动态特性分析、计算、预测及优化设计,可以对整机各工作部件进行动态模拟仿真。在模块化的基础上在设计阶段就可以看出产品的三维几何模型和逼真的色彩。采用CAD,还可以大大提高工作效率,提高设计的一次成功率,从而缩短试制周期,降低设计成本,提高市场竞争能力。 通过对机床部件进行模块化设计,不仅能减少重复性劳动,而且可以快速响应市场,缩短产品开发设计周期。 4. 功能复合化 功能复合化的目的是进一步提高机床的生产效率,使用于非加工辅助时间减至最少。通过功能的复合化,可以扩大机床的使用范围、提高效率,实现一机多用、一机多能,即一台数控车床既可以实现车削功能,也可以实现铣削加工;或在以铣为主的
16、机床上也可以实现磨削加工。宝鸡机床厂已经研制成功的CX25Y数控车铣复合中心,该机床同时具有X、Z轴以及C轴和Y轴。通过C轴和Y轴,可以实现平面铣削和偏孔、槽的加工。该机床还配置有强动力刀架和副主轴。副主轴采用内藏式电主轴结构,通过数控系统可直接实现主、副主轴转速同步。该机床工件一次装夹即可完成全部加工,极大地提高了效率。第二章 系统总体方案设计2.1 C650卧式车床控制要求轴与进给电动机M1、冷却泵电动机M2和溜板箱快速移动电动机M3。从车削加工工艺出发,对各台电动机的控制要求如下: (1)主轴与进给电动机M1,允许在空载下直接起动。其要求能实现正、反转,从而经主轴变速箱实现主轴的正、反转
17、,或通过挂轮箱传给溜板箱来拖动刀架以实现刀架的横向左、右移动。为便于进行车削加工前的对刀,则要求主轴拖动工件作调整点动,所以要求主轴与进给电动机能实现单方向旋转的低速点动控制。主电动机停车时,由于加工工件转动惯量较大,需采用反接制动。(2)冷却泵电动机M2,用于在车削加工时,供出冷却液,对工件与刀具进行冷却。2.2 C650卧式车床控制原理分析2.2.1主电路分析如图2-1,C650卧式车床主电路设有三台电动机的驱动电路。组合开关QS为电源开关,将电源引入。FU1为主电动机M1的短路保护熔断器,FR1为M1过载保护热继电器。R为限流电阻,当主轴点动时,限制启动电流,在停车反转制动时,又起限制过
18、大的反向制动电流的作用。电流表A用来监视电动机M1的绕组电流,由于主轴电机M1的功率很大,故电流表A经电流互感器TA接在主电动机M1的动力回路上。图中时间继电器的常闭开关KT作用是短接电流表A,在机床刚开始启动时,以让电流表躲避启动尖峰电流冲击,待时间继电器延时一定时间后,常闭KT断开,电流表A接入电路,开始监测主轴电动机绕组电流。当机床工作时,可调整切削用量,使电流表A的电流接近主电动机M1额定电流的对应值(经电流互感器TA后减小了的电流值),以便提高生产效率和充分利用电动机M1的潜力。KM1、KM2为控制主轴电机正反转接触器,KM3用于短接电阻R的接触器,由它们的主触头相互组合控制主轴电机
19、M1。速度继电器KS为控制电机的正反转制动用。FU2为冷却泵电动机M2的短路保护熔断器,KM4为控制M2运行的接触器,FR2为M2过载保护热继电器。FU3为快速移动电动机M3的短路熔断器,KM5为控制M3运行的接触器点动时运行,故不设置热继电器保护。2.2.2主电动机点动控制分析如图2-1,SB2为控制主电动机的按钮开关,当按下SB2且不松手时,接触器KM1线圈通电,KM1主触点闭合接通电路,这时接触器KM3线圈没有接通,电网电压经限流电阻接入主电动机M1,从而减少了起动电流。由于中间继电器KA未通电,虽然此时KM1的常开触点(13-15)已闭合,但并未能自锁。因此,当松开SB2后,KM1线圈
20、随即断电,主电动机M1停止运行。2.2.3主电动机的正反转控制分析如图2-1,虽然主电动机M1的额定功率为30KW,但只是在车削时消耗功率较大,而启动负载很小,因而启动电流并不很大。所以,在非频繁点动的一般工 作时,仍然采用了全压直接启动。SB3为正向启动控制按钮开关,当按下SB3时,SB3(715)闭合,交流接触器KM3线圈通电,KM3主触点闭合,短接限流电阻R,另一个常开辅助触点(5-23)闭合,中间继电器KA线圈通电,其常开触点(7-19)闭合,使得KM3在SB3松开后保持通电,进而KA也保持通电。同时KA的常闭触点将停车制动的基本电路切除。另一方面,当SB3尚未松开时,由于KA的另一个
21、常开辅助触点(9-13)已闭合,因而使得交流接触器KM1线圈通电,其主触点闭合,主电动机M1全压启动运行。与此同时,KM1的常开辅助触点(13-15)闭合,与之前闭合的两个KA常开触点(7-19、9-13)形成自锁通路,当SB3松开后,从而KM1保持通电。KT的常闭触点在主电路中短接电流表A,其作用是使电流表避过启动尖峰电流的冲击。在KA常开触点(7-19)闭合KM3通电的同时,通电延时时间继电器KT通电,开始延时,时间到后,其主电路的常闭触点断开,此时电流表接入电路开始监测主电动机M1的绕组电流。如图所示,SB4(13区)为反向启动按钮开关,反向启动控制过程与正向启动控制过程类似。2.2.4
22、主电动机反接制动分析如图2-1, C650卧式车床采用反接制动方式进行停车制动,使用速度继电器KS(3区)进行检测与控制。当主电动机正转启动时,主轴电动机正向旋转达到120r/min时,速度继电器KS的正向常开触点KS1(17-23)闭合,制动电路处于准备状态,当按下总停按钮SB1(3-5)开关后,原来通电的KM1、KM3、KA、KT就马上失电,它们的所有触点均被释放复位到常态。而主电动机因惯性仍然运转,因速度不可能立刻降下来(n 100r/min),所以速度继电器KS1(17-23)仍闭合,当SB1(3-5)复位时KS1(17-23)与控制反接制动电路的KA常闭辅助触点(7-17)一起接通接
23、触器KM2的线圈电路,电流通路是:TC(110V) FU5 (1-3) SB1常闭触点(3-5) FR1(5-7) KA常闭触点(7-17)KS正向常开触点KS1(17-23)KM1常闭触点(23-25)KM2线圈(4-25)FU5(2-4)TC 。这样,主电动机M1主电路即串入限流电阻R进行反接制动,强迫电动机迅速停止,正向转速很快就降下来,当降到(n 100r/min)很低时,速度继电器KS的正向常开触点KS1(17-23)复位断开,这样就切断了上面的KM2线圈通路,其相应的主触点复位,电动机断电,则正向反接制动结束。反转时的反接制动过程与正转停车制动时的反接制动过程相似,则不在作详细分析
24、。在反接状态下,速度继电器KS的反向常开触点KS2(9-17)闭合,制动时接通KM1(4-11)的线圈电路,进行反接制动。2.2.5快速电动机与冷却泵电动机控制分析.如图2-1,若要使快速电动机动作(刀架快速移动),则转动刀架手柄,使其压合位置开关SQ(5-23),SQ闭合,接通KM5线圈电路,KM5线圈主触点(5区)闭合,这样快速电动机M3就开始运转,经传动系统驱动溜板箱,带动刀架快速移动。当刀架手柄复位时,快速电动机M3停止运行。 SB5、SB6按钮开关分别为冷却泵电动机M2的停止、启动开关,控制接触器KM4线圈电路的通断,达到控制冷却泵M2的通断运行。图2-1 C650车床控制原理图2.
25、3 辅助电路分析2.3.1照明电路和控制电源分析如图2-1,TC为控制变压器,二次侧有两路,一路为110V,为控制电路提供电源;而另一路为36V(安全电压),供照明电路照明,SA(7区)为控制照明电路的开关,SA闭合时照明灯HL(7区)点亮,断开则熄灭。2.3.2电流表保护电路如图2-1,电流表A(3区)经电流互感器TA(2区)接在主电动机M1的主电路上,由于在主电动机在刚启动时,启动尖峰电流很大,为了让电流表躲过启动尖峰电流的冲击,则在线路上设置了时间继电器KT(12区)的常闭开关KT(3区)进行保护。在主电动机正向或反向启动后,时间继电器KT(12区)通电,延时开始,延时时间尚未到时,电流
26、表A(3区)被时间继电器KT(12区)延时常闭触点(3区)短路,延时时间到后,电流表开始指示(监测主电动机绕组电流)。第三章 PLC控制系统的设计3.1 PLC的选型 PLC 是控制系统的核心部件,正确的选择PLC对整个控制系统技术经济性指标起着重要的作用。选型的基本原则是:所选的 PLC 应能够满足控制系统的功能需要。选型的基本内容应包括以下几个方面: PLC 结构的选择 在相同功能和相同 I/O 点数的情况下,整体式 PLC 比模块式 PLC 价格低。 PLC 输出方式的选择 不同的负载对 PLC 的输出方式有相应的要求。继电器输出型的 PLC 可以带直流负载和交流负载;晶体管型与双向晶闸
27、管型输出模块分别用于直流负载和交流负载。 I/O 响应时间的选择 PLC 的响应时间包括输入滤波时间、输出电路的延迟和扫描周期引起的时间延迟。 联网通信的选择 若 PLC 控制系统需要联入工厂自动化网络,则所选用的 PLC 需要有通信联网功能,即要求 PLC 应具有连接其它 PLC 、上位计算机及 CRT 等接口的能力。 PLC 电源的选择 电源是 PLC 干扰引入的主要途径之一,因此应选择优质电源以助于提高 PLC 控制系统的可靠性。一般可选用畸变较小的稳压器或带有隔离变压器的电源,使用直流电源时要选用桥式全波整流电源。 I/O 点数及 I/O 接口设备的选择 存储容量的选择 PLC 程序存
28、储器的容量通常以字或步为单位,用户程序存储器的容量可以作粗略的估算。一般情况下用户程序所需的存储器容量可按照如下经验公式计算: 程序容量 =K 总输入点数 / 总输出点数 对于简单的控制系统, K=6 ;若为普通系统, K=8 ;若为较复杂系统, K=10 ;若为复杂系统,则 K=12 。在选择内存容量时同样应留有裕量,一般是运行程序的 25% 。不应单纯追求大容量,在大多数情况下,满足 I/O 点数的 PLC ,内存容量也能满足。 车床电气控制系统所需的I/ O 点总数在256以下,属于小型机的范围. 控制系统只需要逻辑运算等简单功能。主要用来实现条件控制和顺序控制。为实现C650 车床上述
29、的电气控制要求,所以PLC 可以选择西门子公司的S7 - 200 系列。它的价格低,体积小,非常适用于单机自动化控制系统. 该机床的输入信号是开关量信号,输出是负载三相交流电动机接触器等。 车床电气控制系统需要9个外部输入信号,6 个输出信号。PLC 所具有的输入点和输出点一般要比所需冗余30 % ,以便于系统的完善和今后的扩展预留。所以本系统所需的输入点为14 个,输出点为7 个。现选择西门子公司生产的S7 - 200 系列的CPU224 型PLC ,24V 直流14 点输入。 3.2 I/O地址的分配根据该系统的控制要求,输入输出设备,确定了I/O点数。根据需要控制的开关、设备大约输入点为
30、9个,输出点为6 个需进行控制,I/O地址分配如下表3-1所示。输入信号PLC地址输出信号PLC地址主轴停止按钮SB1I0.0主电动机M1 正转KM1Q0.0主轴电动机M1 的正转按钮SB3I0.1主电动机M1 反转KM2Q0.1主轴电动机M1 的反转按钮SB4I0.2短接制动电阻KM3Q0.2主轴电动机M1 的点动按钮SB2I0.3冷却泵电动机M2 起、停KM4Q0.3冷却泵电动机M2 停止按钮SB5I0.4快速电动机M3 起、停KM5Q0.4冷却泵电动机M2 起动按钮SB6I0.5快速电动机M3 起、停位置开关SQI0.6速度继电器正向常开触头KS1I0.7速度继电器反向常开触头KS2I1
31、.0表3-1 C650卧式车床PLC控制系统I/O地址分配图3.3 I/O接线图根据PLC I/O端子的分配,画出了C650卧式车床PLC控制系统I/O接线图如下图3-1所示图3-1 C650卧式车床PLC控制系统I/O接线图3.4 PLC控制原理图3.5 元器件清单 代号名 称型 号 及 规 格用 途数量M1三相交流异步电动机JO3-802-6 0.75KW 380V 905r/min主电动机1M2三相交流异步电动机JO3-802-6 0.75KW 380V 905r/min冷却泵电动机1M3三相交流异步电动机JO3-802-6 0.75KW 380V 905r/min快速移动电动机1FU1
32、熔断器RL1-15 15A主电动机过载保护1FU2熔断器RL1-15 15AM2、M3短路保护1KM1交流接触器CJ10-40A 线圈电压220VM1正转接触器1KM2交流接触器CJ10-40A 线圈电压220VM1反转接触器1KM3交流接触器CJ10-40A 线圈电压220V 短接制动按钮1KM4交流接触器CJ10-75A 线圈电压220V控制M21KM5交流接触器CJ10-40A 线圈电压220V控制M31FR1热继电器JR10-60 52.5AM1过载保护1FR2热继电器JR10-10 *14 7.20AM2过载保护1SB1按钮黑色M1正转1SB2按钮黑色M1反转1SB3按钮黑色M1停止
33、1SB4按钮黑色M1点动1SB5开关黑色M2起动停止1SB6按钮黑色快速移动电机1KS1速度继电器LA2 红色反接制动1KS2速度继电器LA19-11J 红色反接制动1TA电流互感器LQG-0.5 100/5A-1表3-2 元器件清单第四章 系统软件设计4.1 控制系统的梯形图程序设计 车床正反向工作及反接制动过程该控制程序步骤为:按下SB3,M0.0导通,Q0.2动作,KM3吸合短接电阻R,同时M0.1动作,Q0.0动作,KM1吸合,主电动机M1正转起动运行,开始车削加工。要停车时,按下SB1,Q0.0、Q0.2释放,松开SB1,Q0.1动作,KM2吸合,主电动机M1串电阻反接制动,当速度接
34、近于零时,速度继电器正转常开触头KS1断开,KM2释放电动机M1停转。反向工作过程与正向相同。主电动机点动过程按下SB2,Q0.0动作,使KM1吸合,M1串电阻限流点动,松开SB2,Q0.0断开,M1停转,实现点动控制。 刀架快速移动及冷却泵工作过程该控制程序步骤为:刀架快速移动过程为按下开关SQ,Q0.4动作,KM5吸合,M3起动运行 。 冷却泵工作过程为按下开关SB6,Q0.3动作KM4线圈得电,冷却泵电动机M2工作,停止时按下SB5即可。梯形图程序见下图4-1图4-1 梯形图4.2 PLC控制程序流程图如下图4-2 程序流程图第五章 系统调试 在调试前我们需要对线路进行检查,按照接线图检
35、查电源线和接地线是否可靠,主线路和控制线路连接是否正确,绝缘是否良好,各开关是否处于“0”位,插头和各插接件是否全部插紧;检查工作台等部件的位置是否合适,防止通电时发生失误。在检查完各部分正确无误后,便可接上设备的工作电源,开始通电调试了。5.1 硬件检查合上实验台上供电的电源开关,用万用表测量系统总电源开关进线端的电压,看一看电压是否正常,有无断相或三相电压特别不平衡的现象。如果一切正常,便可合上总电源开关SB1,并用万用表测量电源能供到的各支路终端的电压是否正常。有无断相。 用万用表测量各硬件的接线情况,看是否有短接,断接和虚连的情况,并与电路控制原理图一一对照,看是否有无接错的地方。各部
36、分都正确无误的情况下进行软硬件联调。5.2 系统综合调试 将编写好的PLC程序进行编译,下载至PLC,由于控制系统运行电压是在220V,为了保证安全只好先在实验台上分步模拟,观察各步的动作都正确无误后,按照PLC控制系统接线图在实验台上整体模拟,输出部分(接触器,电动机,快速移动刀架)用实验台上的指示灯代替, 观察输出端点指示灯在一个工作循环里的状态变化,并与工艺过程对照。在对照前由于忘记对PLC进行复位,虽然程序正确当没达到控制效果,所以在调试前应先进行复位操作。 在实验台上整体模拟无误后,将检查完毕的硬件连接电路(各电动机连接的电路)与PLC连接在一起,分别观察各电动机的工作状态,分步运行
37、无误后,将所有的电动机按照PLC接线图连接在一起,分别观察各个电动机的运行状态,并与工艺过程比较,没有发现什么问题。此控制程序设计能够满足控制系统的要求。下图为仿真结果:图5-1为主电动机正转图5-2为主电动机的反转第六章 结论本设计具有性能可靠,外围电路简单等优点,设计思路清晰,程序简单明了。C650车床控制系统利用了西门子STC-200系列PLC的特点,对按扭、开关等其他一些输入/输出点进行控制,实现了车床过程的自动化。此外PLC 可以重复使用,降低了测试经费。它的灵活性、操作方便性也方便测试者随时输入、调试和修改控制程序。PLC 又设有串行接口,方便地与计算机进行连接,组成测控系统,给系
38、统的维护和使用带来了很大方便。在此我要感谢张伏老师对我的悉心指导,感谢张老师对我的帮助。在设计过程中,我通过查阅大量有关资料,向老师请教,并与同学交流经验等方式,使自己学到了不少知识,也经历了不少艰辛。总之,通过这次的课程设计我懂得了很多东西,培养了自己独立工作的能力,大大提高了自己动手的能力。参考文献1 罗宇航.流行PLC实用程序及设计.西安:西安科技大学出版社,2006.122 林春方.可编程控制器及其应用.上海:上海交通大学出版社,2003.63 廖常初.PLC编程及应用(第2版).北京:机械工业出版社,2007.9 4 曹辉.可编程序控制器系统原理及应用.北京:电子工业出版社,20035 机床电路图大全编写组.机床电路图大全(上册).北京:机械工业出版社,1993.46 齐占庆.机床电气自动控制.北京:机械工业出版社,1987.87 黎亚元.机床电气自动控制.重庆:重庆大学出版社,1994.108 王士兰.PLC技术及运用.北京:机械工业出版社,2000.89 方宗达.电气控制与PLC运用.北京:机械工业出版社,1996.1010夏国伟.机床电气与维修.西安:陕西科学技术出版社,1980.611邓星钟.机电传动控制.武汉:华中科技大学出版社,2001.312路林吉.江龙康等.可编程序控制器原理及应用.北京:清华大学出版社,2002