《普通高等学校招生全国统一考试数学卷山东理含答案.doc》由会员分享,可在线阅读,更多相关《普通高等学校招生全国统一考试数学卷山东理含答案.doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流普通高等学校招生全国统一考试数学卷山东理含答案.精品文档.2007年普通高等学校招生全国统一考试(山东卷)理科数学第卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,选择一个符合题目要求的选项(1)若(i为虚数单位),则使的值可能是( )ABCD(2)已知集合,则( )ABCD正方形圆锥三棱台正四棱锥(3)下列几何体各自的三视图中,有且仅有两个视图相同的是( )ABCD(4)设,则使函数的定义域为且为奇函数的所有值为( )A,B,C,D,(5)函数的最小正周期和最大值分别为( )A,B,C,D,(6)给
2、出下列三个等式:, ,下列函数中不满足其中任何一个等式的是( )ABCD(7)命题“对任意的,”的否定是( )A不存在,013141516171819秒频率/组距0.360.340.180.060.040.02B存在,C存在,D对任意的,(8)某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;第六组,成绩大于等于18秒且小于等于19秒右图是按上述分组方法得到的频率分布直方图设成绩小于17秒的学生人数占全班总人数的百分比为,成绩大于等于15秒且小于17秒的学生人数为,则从频
3、率分布直方图中可分析出和分别为( )A0.9,35B0.9,45C0.1,35D0.1,45(9)下列各小题中,是的充要条件的是( )开始输入结束输出否:或;:有两个不同的零点;是偶函数ABCD(10)阅读右边的程序框图,若输入的是100,则输出的变量和的值依次是( )A2500,2500B2550,2550C2500,2550D2550,2500(11)在直角中,是斜边上的高,则下列等式不成立的是( )ABCD(12)位于坐标原点的一个质点按下列规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是,质点移动五次后位于点的概率是( )ABCD第卷(共90分)二、
4、填空题:本大题共4小题,每小题4分,共16分答案须填在题中横线上(13)设是坐标原点,是抛物线的焦点,是抛物线上的一点,与轴正向的夹角为,则为 (14)设是不等式组表示的平面区域,则中的点到直线距离的最大值是 (15)与直线和曲线都相切的半径最小的圆的标准方程是 (16)函数的图象恒过定点,若点在直线上,其中,则的最小值为 三、解答题:本大题共6小题,共74分解答应写出文字说明、证明过程或演算步骤(17)(本小题满分12分)设数列满足,()求数列的通项;()设,求数列的前项和(18)(本小题满分12分)设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计)()求方程
5、有实根的概率;()求的分布列和数学期望;()求在先后两次出现的点数中有5的条件下,方程有实根的概率(19)(本小题满分12分)BCDAE如图,在直四棱柱中,已知,()设是的中点,求证:平面;()求二面角的余弦值(20)(本小题满分12分)北乙甲如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?(21)(本小题满分12分)已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为()求椭圆的标准
6、方程;()若直线与椭圆相交于,两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标(22)(本小题满分14分)设函数,其中()当时,判断函数在定义域上的单调性;()求函数的极值点;()证明对任意的正整数,不等式都成立2007年普通高等学校招生全国统一考试(山东卷)理科数学参考答案第卷一、选择题(1)D(2)B(3)D(4)A(5)A(6)B(7)C(8)A(9)D(10)D(11)C(12)B第卷二、填空题(13)(14)(15)(16)三、解答题(17)(本小题满分12分)解:(), 当时, -得,在中,令,得-得即,(18)(本小题满分12分)解:()由
7、题意知:设基本事件空间为,记“方程没有实根”为事件,“方程有且仅有一个实根”为事件,“方程有两个相异实数”为事件,则,所以是的基本事件总数为36个,中的基本事件总数为17个,中的基本事件总数为个,中的基本事件总数为17个又因为是互斥事件,故所求概率()由题意,的可能取值为,则故的分布列为:所以的数学期望()记“先后两次出现的点数有中5”为事件,“方程有实数”为事件,由上面分析得(19)(本小题满分12分)解法一:BCDAEG()连结,则四边形为正方形,且,四边形为平行四边形又平面,平面,平面()以为原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系,不妨设,则,BCDAEzyxFM,设
8、为平面的一个法向量由,得 取,则又,设为平面的一个法向量,由,得取,则,设与的夹角为,二面角为,显然为锐角,即所求二面角的余弦为解法二:()以为原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系,设,由题意知:BCDAExyzFM,又,平面,平面,平面()取的中点,的中点,连结,由()及题意得知:为所求二面角的平面角所以二面角的余弦值为解法三:BCDAEFMH()证明:如解法一图,连结,设,连结,由题意知是的中点,又是的中点,四边形是平行四边形,故是的中点,在中,又平面,平面,平面()如图,在四边形中,设,故,由()得,即又,平面,又平面,取的中点,连结,由题意知:,又,为二面角的平面
9、角连结,在中,由题意知:取的中点,连结,在中,二面角的余弦值为(20)(本小题满分12分)北甲乙解法一:如图,连结,由已知,又,是等边三角形,由已知,在中,由余弦定理,因此,乙船的速度的大小为(海里/小时)答:乙船每小时航行海里解法二:如图,连结,由已知,北乙甲,在中,由余弦定理,由正弦定理,即,在中,由已知,由余弦定理,乙船的速度的大小为海里/小时答:乙船每小时航行海里(21)(本小题满分12分)解:()由题意设椭圆的标准方程为,由已知得:,椭圆的标准方程为()设,联立得,又,因为以为直径的圆过椭圆的右焦点,即,解得:,且均满足,当时,的方程为,直线过定点,与已知矛盾;当时,的方程为,直线过
10、定点所以,直线过定点,定点坐标为(22)(本小题满分14分)解:()由题意知,的定义域为,设,其图象的对称轴为,当时,即在上恒成立,当时,当时,函数在定义域上单调递增()由()得,当时,函数无极值点时,有两个相同的解,时,时,时,函数在上无极值点当时,有两个不同解,时,即,时,随的变化情况如下表:极小值由此表可知:时,有惟一极小值点,当时,此时,随的变化情况如下表:极大值极小值由此表可知:时,有一个极大值和一个极小值点;综上所述:时,有惟一最小值点;时,有一个极大值点和一个极小值点;时,无极值点()当时,函数,令函数,则当时,所以函数在上单调递增,又时,恒有,即恒成立故当时,有对任意正整数取,则有所以结论成立