《开关电源的设计设计.doc》由会员分享,可在线阅读,更多相关《开关电源的设计设计.doc(63页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流开关电源的设计设计.精品文档.90W开关电源的设计摘 要本课题是设计一个两路输出的反激式开关电源。220V交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压通过功率转换电路进入高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。采用全控型电力电子器件MOSFET作为开关,通过控制开关的导通时间来调节稳定输出电压,主控制芯片采用UC3844实现电压电流双闭环控制,采用PC817、TL431等专用芯片以及其他的电路元件相配合作为光耦隔离反馈电路,使设计出的开关电源具有自动稳压及过载保
2、护功能。系统工作频率为52kHz,输出2路隔离的电压。本设计将使用saber对电路结构经行仿真对设计参数进行验证。关键词:开关电源;反激式变换器;高频变压器;UC3844;saber Abstract This paper is to design a flyback SMPS that owns two lines of output. After rectification and smoothing, 220V alternating voltage will turn into direct voltage containing certain components of pulsat
3、ion. That voltage passes power conversion circuit into high-frequency converter and is converted into square wave of needed voltage value. Finally this square wave voltage will be rectified and smoothed into direct voltage which is in need. The SMPS this paper designs adopts full controlled power el
4、ectronic device-MOSFET as switcher and adjusts stable output voltage by controlling the switchers turn-on time. The main controlling chip of the SMPS chooses UC3844 to realize dual closed-loop control of voltage and current. Thanks to the adoption of PC 817 and TL431 etc dedicated chips and other ma
5、tched circuit components as optical coupling isolation feedback circuit, this SMPS will be also in possession of functions of automatic voltage regulation and overload protection. Operating frequency of this system is 52 kHz and this system outputs voltages of the two isolated lines. This design wil
6、l adopt saber to test and verify design parameter through emulating the configuration of circuits. Key words: SMPS;Flyback Converter;High-frequency Converter;UC3844;saber第一章 引 言11.1 课题研究的背景及意义11.2 DC_DC变换器主回路使用的元件及其特性21.2.1 开关21.2.2 电感21.2.3 电容31.3 开关电源的技术动态41.4 本课题的主要研究内容41.4.1 开关电源的种类选择41.5反馈电路的基本
7、类型与选择102.1 开关电源的基本原理132.2 开关电源的组成132.3 单端反激式拓扑分析142.3.1 DC-DC主回路拓扑结构142.3.2 工作原理152.3.3 基本关系式18第三章 系统设计203.1 技术指标203.2硬件结构设计203.2.1 UC3842/3/4/5系列电流模式PWMIC203.2.2引脚接线233.3 关键元器件的选择与设计293.3.1 线性光耦合器PC817293.3.2 可调精密并联稳压器TL431303.3.3 高频变压器313.3.4 输入整流滤波电路的电路323.3.5 RCD缓冲器设计333.3.8 RC缓冲器设计353.3.9完整电路36
8、3.4硬件参数设计373.4.2计算和选取绕组导线规格403.4.3功率MOSFET的选择403.4.5 RCD缓冲器设计403.4.6输出级设计413.4.7元器件参数选择423.4.8 保护电路的设计423.5 电路工作过程总结434.1软件概要454.1.1主要应用领域454.1.3优势464.1.4特点464.1.5应用504.2仿真过程514.2.1使用Saber Sketch创建设计514.2.6输出电压594.2.7 震荡电路图:604.2.8 mosfed门级电压即3844输出:614.2.10 RC缓冲电路的作用63第五章 设计总结65外文原文与译文67外文原文:67Seve
9、ral notes of switching power supply design67外文翻译:78开关电源设计几项注意78致 谢85第一章 引 言1.1 课题研究的背景及意义随着电子技术的发展,电子设备的广泛应用,这些设备对电源的要求也越来越高,传统线性电源笨重效率低,严重影响电子设备、电子产品的发展。于是,20世纪60年代开关电源诞生了。按电力电子的习惯称谓,ACDC(理解为AC转换成DC,其中AC表示交流电,DC表示直流电)成为整流(包括整流和离线式变换),DC-AC称为逆变,ACAC称为交流交流直接变频(同时也变压),DCDC称为直流直流变换。为达到转换目的,手段是多样的。20世纪6
10、0年代前研发了半导体器件,并以此器件为主实现这些转换。电力电子学科从此形成并有了近30年的迅速发展。所以,广义地说,凡用半导体功率器件作为开关,将一种电源形态转变称为另一种形态的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称开关电源(Switching Power Supply)。开关电源主要组成部分是DCDC变换器,因为它是转换的核心,涉及频率变换。目前DC-DC变换中所用的频率提高最快,它在提高频率中碰到的开关过程,损失机制,为提高效率而采用的方法,也可以作为其他转换方法参考。 值得指出,常见到的离线式开关变换器(Offline Switching Convert
11、er)名称,是AC-DC变换,也常称为开关整流器;它不单是整流的意义,而且整流后又做了DCDC变换。所谓离线并不是变换器与市电线路无关的意思,只是变换器中因有高频变压器隔离,使输出的直流电(离开了市)线的缘故。所以称离线式开关变换器。 与传统线性稳压电源相比开关电源有以下优点:1效率高,损耗小:开关电源效率通常在75%以上,有的甚至可以达到90%以上。由于开关管损耗小,因而不需要采用大散热器,能有效减小电源体积。损耗小使得电子设备内部温度也相对较低,避免了元件长期在高温环境下损坏,这对电子设备的可靠性和稳定性的提升有明显的作用。2稳压范围宽:输入AC或DC电压在很大范围内变化时,电压变化率很小
12、。而且在输入电压发生较大波动时,电源依然保持较高的效率,因此,开关电源比较适合电网波动较大的地区使用。3体积小,重量轻:开关稳压电源可直接将工频电网电压直接整流成直流后,经过高频变压器获得不同的交流电压,再经整流滤波得到所需的直流电压,这样就可以免去笨重的工频变压器,从而节省线材,减小电源体积和重量。4安全可靠:开关电源一般都具有多种保护电路,保证电源的安全可靠工作。随着电力电子技术的发展和进步,开关电源技术在不断地创新,目前,涌现出许多开关电源的新技术和新产品。开关电源技术是一种普适性、渗透性的绿色化技术,使产品性能可靠、成熟、经济、实用,它在国民经济以及国防,高科技发展中都有广泛的应用前景
13、。1.2 DC_DC变换器主回路使用的元件及其特性 1.2.1 开关 无论哪一种DC-DC变换器,主回路使用的元件只有电子开关,电感和电容。电子开关只有快速的开通,快速的关断这两种状态,并且快速的切换。只有快速,状态转换引起的损耗才小。目前使用的电子开关多是双极型晶体管,功率场效应管,逐步普及的有IGBT管。还有各种特性较好的新式的大功率开关元件,除了220V整流用的二极管是普通的-整流管外,其他的二极管是开关管,要求是快速的开关。值得指出,主回路也不是绝对不会出现电阻元件。出现的前提是极有利于控制性能而又不引起多大损耗,而且限于在几十瓦以下的小功率变换器中应用。一般其阻值在毫欧级,其上得到的
14、毫伏电压可用来作为当前工作周期进行电流控制或保护的信号。1.2.2 电感 电感是开关电源中常用的元件,由于它的电流,电压相位不同,因此理论损耗为零。电感常为储能元件,也常与电容公用在输入滤波器和输出滤波器上,用于平滑电流,也称它为扼流圈。其特点是流过其上的电流有“很大的惯性”。换句话说,由于“磁通连续”性电感上的电流必须是连续的,否则会产生很大的电压尖峰波。电感为磁性元件,自然有磁饱和的问题,应用中有允许其饱和的,有允许其从一定电流值起开始进入饱和的,也有不允许其出现饱和的,在具体线路中要注意区分。在多数情况下,电感工作在“线性区”,此时电感值为一常数,不随端电压与流过的电流而变化。但是,在开
15、关电源中有一个不可忽视的问题,就是电感的绕线所引起两个分布参数(或称寄生参数)的现象。其一是绕线电阻,这是不可避免的;其二是分布式杂散电容,随绕制工艺,材料而定杂散电容在低频时影响不大但是随着频率的提高而逐渐显现出来,到某一频率以上是电感也许变成电容的特性。如果将杂散电容“集成”为一个,则从电感的等效电路可以看出在某一角频率后的电容特性。 在分许电感在线路中工作或绘波形图时,不妨考虑下面几个特点:(1)在电感L中有电流I流过是,储存有; (2)当电感L岭段的电压V不变的时候,依公式可知,忽略内阻R时,电感电流变化率,表明电感电流线性增加; (3)正在储能的电感器,因为能量不能瞬时突变,若切断电
16、感在变压器原边回路时,能量绝大部分经变压器副边出现的电流输送至负载,原,副边耦合中保持相同的安匝数,维持磁场不变,活每匝伏.秒值不变; (4)就像电容器有充,放电流一样,电感器也有充,放电电压。电容上的电压与电流的积分(称为安.秒值)成正比,电感上的电流与电压的积分(称为伏.秒值)成正比,如图下示,只要电感器电压变化,其电流斜率也变化;正向电压使电流从零线性上升;反向电压使电流线性下降。根据能量守恒原理在电感正伏。秒值相等的某一时间上,线性变化的电流重新降到零。1.2.3 电容电容是开关电源中常用元件,它与电感一样也是是储存电能和传递电能的元件,但对频率的特性却刚好相反。应用上,主要是“吸收”
17、纹波,具有平滑电压纹波的作用。实际的电容并不是理想元件。电容器由于有介质,接点与引出线,形成一个等效串联内电阻ESR。这种等效串联内电阻在开关电源中小信号反馈控制上,以及输出纹波抑制的设计上,起着不可忽略的作用。另外电容等效电路上有一个串联的电感,它在分析电容器的滤波效果,非常重要。有时加大电容量并不能使电压波形平直,就是因为这个串联寄生电感起着副作用。 电容的串联电阻与接点和引出线有关,也与电解液有关。常见铝电解电容电解质的成分为AL2O3,导电率比空气的约大七倍,为了能继续提高电容量,把铝箔表面做成有规律的凸凹不平状,使氧化膜表 ,温度升高,电阻减小。面积加大(因为电容量与表面积成正比),
18、加入的电解液可在凹凸面上流动。普通的铝电解电容,在高频脉动电流大幅度增加下,高频阻抗温度上升较大,成了开关电源长寿命的瓶颈。所谓好电容耐纹波电流,耐温升,ESR值小。某电容电解液受温度影响,温度升高,电阻减小,即电容串联电阻减小,则是理想的。 温度升高,等效串联电阻(ESR)加大,导致电容寿命减短,这是普通电解电容的缺点。为了改善这一缺点,将电解液覆盖在氧化膜表面后将其干燥,形成固体电解质电容,即“OS电容”,OS电容的串联电阻小了许多。在开关电源中的电容器,工作时的平均电流为0,但因充放电电流波形不同,有效值电流是很大的。例如,市电整流输入到开关电源的滤波电路电容,其充电只是在市电正弦半波瞬
19、时值高于电容上直流电压的瞬间才发生,而且是低频的(50hz)由电容放电供电给开关电源,放电频率是高频的(与开关电源频率相同)。有效值电流ic(rms )比负载电流I0 大,其计算式为: ic(rms=1.12I0 ;电容器的选择,除了考虑有效值外尚要考虑纹波电压耐压值的要求。1.3 开关电源的技术动态高频方面。许多国家都步入MHz级别,涌现出众多新型高频磁性材料,其寄生参数和磁损耗减小,散热性增强,如56m超薄钴基非晶态磁带,纳米结晶软磁薄膜也在研究。铁氧体或其他薄膜材料可集成在硅片上等。高效方面。致力于减小功率器件的通态电阻、降低漏电流等。如高性能碳化硅(SiC)功率半导体器件,其优点是:禁
20、带宽,工作温度高(可达600C),通态电阻小,导热性能好,漏电流极小,PN结耐压高等等。电磁兼容方面。主要研究典型电路与系统的电磁干扰建模;PCB板和电源EMC优化设计软件;强磁场对人体的危害;大功率开关电源EMC测量方法的研究等。新型电容器,研发适合于功率电源的新型电容器和超大电容,要求电容量大、等效电阻ESR小、体积小等。功率因数校正,许多国家也在研究性价比较高的功率因数校正技术。 低压大电流,微处理器性能的不断提高,低压大电流开关电源也随之发展起来。例如电压低达1.11.8V,而电流高达50100A的开关电源。另外,还有采用波形交错技术,探寻省略滤波电容的可行性等。开关电源还朝着模块化方
21、向发展。1.4 本课题的主要研究内容随着电子技术的高速发展,各种各样的电子设备应运而生,然而这么多电子设备,精密仪器的背后都需要有个稳定输出的电源做支持。从原有的线性稳压电源到现在的开关稳压电源,不论从体积、功耗、性能上,都有质的飞跃,并且开关电源更容易实现多路不对称输出。这使得各种电子设备不同功能的需要都可以得到满足。本课题主要研究的是输出两路隔离电压的开关电源,研究内容如下:1.4.1 开关电源的种类选择开关型稳压电源的种类很多,分类方法也有多种。从推动功率管的方式来分可分为自激式和它激式,在自激式开关电源中由开关管和高频变压器构成正反馈环路来完成自激振荡;它激式开关稳压电源必须附加一个振
22、荡器,振荡器产生的开关脉冲加在开关管上,控制开关管的导通和截至。按开关管的个数及连接方式可分为单端式、推挽式、半桥式和全桥式等,单端式开关电源仅用一个开关管,推挽式和半桥式采用两个开关管,全桥式则采用四个开关管。按开关管的连接方式,开关电源分为串联型与并联型开关电源,串联型开关电源的开关管是串联在输入电压与输出负载之间的,属于降压式稳压电路;而并联型开关电源的开关管是并联在开关电源之间的,属于升压式电路。 1、单端反激式开关电源单端反激式开关电源的典型电路如图1-4-1所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1导通时,高频变压器T初级绕组的
23、感应电压为上正下负,整流二极管VD1处于截止状态,副边上没有电流通过,能量储存在高频变压器的初级绕组中。当开关管VT1截止时,变压器T副边上的电压极性颠倒,使初级绕组中存储的能量通过VD1整流和电容C滤波后向负载输出。单端反激式开关电源电路简单、所用元件少,输出与输入间有电气隔离,能方便的实现单路或多路输出,开关管驱动简单,可通过改变高频变压器的原、副边绕组匝比使占空比保持在最佳范围内,且有较好的电压调整率。其输出功率为20100W。它也有其一定的缺点,如开关管截止期间所受反向电压较高,导通期间流过开关管的峰值电流较大。但这可以通过选用高耐压、大电流的高速功率器件,在输入和输出端加滤波电路等措
24、施加以解决。单端反激式开关电源使用的开关管VT1承受的最大反向电压是电路工作电压值的两倍,工作频率在20200kHz之间。图1-4-1 单端反激式开关电源 2、单端正激式开关电源 单端正激式开关电源的典型电路如图1-4-2所示。这种电路在形式上与单端反激式电路相似,但工作情形不同。当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量:当开关管VT1截止时,电感L通过续流二极管VD3继续向负载释放能量。 在电路中还设有钳位线圈与二极管VD1,它可以将开关管VT1的最高电压限制在两倍电源电压之间。为满足磁芯复位条件,即磁通建立和复位时问应相等,所以电路中脉冲的占空比不能大
25、于50%。由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,所以输出功率范围大,可输出50200W的功率。电路使用的变压器结构复杂,体积也较大,因此这种电路的实际应用较少。图1-4-2 单端正激式开关电源 3、自激式开关稳压电源 自激式开关稳压电源的典型电路如图1-4-3所示。当接入电源后在R1给开关管VT1提供启动电流,使VT1开始导通,其集电极电流Ic在L1中线性增长,在L2中感应出使VT1基极为正,发射极为负的正反馈电压,使VT1很快饱和。与此同时,感应电压给C1充电,随着C1充电电压的增高,VT1基极电位逐渐变低,致使VT1退出饱和区,Ic开始减小,在L2中感应出使VT1基极
26、为负、发射极为正的电压,使VT1迅速截止,这时二极管VD1导通,高频变压器T初级绕组中的储能释放给负载。在VT1截止时,L2中没有感应电压,直流供电输人电压又经R1给C1反向充电,逐渐提高VT1基极电位,使其重新导通,再次翻转达到饱和状态,电路就这样重复振荡下去。这里就像单端反激式开关电源那样,由变压器T的次级绕组向负载输出所需要的电压。自激式开关电源中的开关管起着开关及振荡的双重作用,也省去了控制电路。电路中由于负载位于变压器的次级且工作在反激状态,具有输入和输出相互隔离的优点。这种电路不仅适用于大功率电源,亦适用于小功率电源。图1-4-3 自激式开关电源 4、推挽式开关电源 推挽式开关电源
27、的典型电路如图1-4-4所示。它属于双端式变换电路,高频变压器的磁芯工作在磁滞回线的两侧。电路使用两个开关管VT1和VT2,两个开关管在外激励方波信号的控制下交替的导通与截止,在变压器T次级绕组得到方波电压,经整流滤波变为所需要的直流电压。 这种电路的优点是两个开关管容易驱动,主要缺点是开关管的耐压要达到两倍电路峰值电压。电路的输出功率较大,一般在100500W范围内。图1-4-4 推挽式开关电源5、降压式开关电源 降压式开关电源的典型电路如图1-4-5所示。当开关管VT1导通时,二极管VD1截止,输入的整流电压经VT1和L向C充电,这一电流使电感L中的储能增加。当开关管VT1截止时,电感L感
28、应出左负右正的电压,经负载RL和续流二极管VD1释放电感L中存储的能量,维持输出直流电压不变。电路输出直流电压的高低由加在VT1基极上的脉冲宽度确定。图1-4-5降压式开关电源 6、升压式开关电源 升压式开关电源的稳压电路如图1-4-6所示。当开关管VT1导通时,电感L储存能量。当开关管VT1截止时,电感L感应出左负右正的电压,该电压叠加在输人电压上,经二极管VD1向负载供电,使输出电压大于输人电压,形成升压式开关电源。图1-4-6 升压式开关电源 7、反转式开关电源 反转式开关电源的典型电路如图1-4-7所示。这种电路又称为升降压式开关电源。无论开关管VT1之前的脉动直流电压高于或低于输出端
29、的稳定电压,电路均能正常工作。当开关管VT1导通时,电感L储存能量,二极管VD1截止,负载RL靠电容C上次的充电电荷供电。当开关管VT1截止时,电感L中的电流继续流通,并感应出上负下正的电压,经二极管VD1向负载供电,同时给电容C充电。降压式、升压式、反转式开关电源的高压输出电路与副边输出电路之间没有绝缘隔离,统称为斩波型直流变换器。图1-4-7 反转式开关电源一般来说,功率很小的电源(1100W)采用电路简单、成本低的反激型电路较好;当电源功率在100W以上且工作环境干扰很大、输入电压质量恶劣、输出短路频繁时,则应采用正激型电路;对于功率大于500W、工作条件较好的电源,则采用半桥或全桥电路
30、较为合理;如果对成本要求比较严,可以采用半桥电路;如果功率很大,则应采用全桥电路;推挽电路通常用于输入电压很低、功率较大的场合。基于本设计中开关型稳压电源是采用全控型电力电子器件作为开关,利用控制开关的占空比来调整输出电压的新型电源,具有体积小、重量轻、噪音小,以及可靠性高等特点。本设计旨在设计并制作出一种额定输出功率为90W的通用的小功率开关电源,主要采用UC384X、PC817A 、TL431等专用芯片以及其他的电路元件相配合,使设计出的开关电源具有自动稳压功能。因此,本设计就选择了基于UC384X系列控制IC的单端反激式开关电源。1.5反馈电路的基本类型与选择单片开关电源的反馈电路有4种
31、基本类型:基本反馈电路;改进型基本反馈电路;配TL431的光耦反馈电路;配稳压管的光耦反馈电路。它们的简化电路如图1-5-1所示。 (a) 基本反馈电路; (b) 改进型基本反馈电路;(c) 配TL431的光耦反馈电路;(d) 配稳压管的光耦反馈电路 图1-5-1 反馈电路的4种基本类型 (a)基本反馈电路,其优点是电路简单、成本低廉、适于制作小型化、经济型开关电源;其缺点是稳压性能较差,电压调整率SU=1.5%2%;负载调整率SI=-4%+4%。 (b)改进型基本反馈电路,只需增加一支稳压管VDZ和电阻R1,即可使负载调整率达到-2%+2% 。VDZ的稳定电压一般为22V,需相应增加反馈绕组
32、的匝数,以获得较高的反馈电压UFB,满足电路的需要。 (c)配TL431的光耦反馈电路,其电路较复杂,但稳压性能最佳。这里用TL431型可调式精密并联稳压器来代替稳压管,构成外部误差放大器,进而对Uo作精细调整。这种反馈电路适于构成精密开关电源。(d)配稳压管的光耦反馈电路,由VDZ提供参考电压UZ,当Uo发生波动时,在LED上可获得误差电压。因此,该电路相当于给增加一个外部误差放大器,再与内部误差放大器配合使用,即可对Uo进行调整。由于本设计旨在针对精密开关稳压电源进行的设计与制作,所以选择配TL431的光耦反馈电路。单片开关电源的典型应用电路分析:系列单片开关电源的典型应用电路如图1-5-
33、2所示。由于单端反激式开关电源电路简单、所用元件少,输出与输入间有电气隔离,能方便的实现多路输出,开关管驱动简单,因此该电源采用单端反激式电路。图1-5-2 单片开关电源的典型应用电路由图可见,高频变压器初级绕组NP的极性与次级绕组NS、反馈绕组NF的极性相反。在导通时,次级整流管VD2截止,此时电能以磁能量形式存储在初级绕组中;当截止时,VD2导通,能量传输给次级。高频变压器在电路中兼有能量存储、隔离输出和电压变换这三大功能。图中,BR为整流桥,CIN为输入端滤波电容,COUT是输出端滤波电容。交流电压UAC经过整流滤波后得到直流高压,经初级绕组加至的漏极上。在功率MOSFET关断瞬间,高频
34、变压器漏感会产生尖峰电压,另外在初级绕组上还会产生感应电压(即反向电动势)UOR,两者叠加在直流输入电压巧上,加至内部功率开关管MOSFET的漏极上,因此必须在漏极增加钳位保护电路。钳位电路由瞬态电压抑制器或稳压管VDZ1和阻塞二极管VD1组成,VD1宜采用超快恢复二极管。当MOSFET导通时,变压器的初级极性上端为正,下端为负,从而导致VD1截止,因而钳位电路不起作用。在MOSFET截止瞬间,初级极性则变为上负下正,此时尖峰电压就被VDZ1吸收掉。该电源的稳压原理简述如下:反馈绕组电压经过VD3,CF整流滤波后获得反馈电压UFA,经光耦合器中的光敏三极管给的控制端提供偏压。CT是控制端C的旁
35、路电容。输出电压Uo通过电阻分压器R1、R2分压并获得取样电压,与TL431中的2.5V基准电压进行比较后输出误差电压,然后通过光耦去改变TOP246Y的控制端电流 ,的输出占空比D与IC成反比,故D减小,这就迫使Uo降低,达到稳压目的。反之,Uo减小,导致UF减小,Ic减小,进而D减小,最终使Uo减小,同样起到稳压作用。由此可见,反馈电路正是通过调节的占空比,使输出电压趋于稳定的。本设计的开关电源是采用全控型电力电子器件MOSFET作为开关,利用控制开关器件的占空比来调整并稳定输出电压,主电路采用多路输出单端反激式变换器结构,采用UC3844控制芯片实现电压电流双闭环控制,采用PC817、T
36、L431等专用芯片以及其他的电路元件相配合,作为反馈环节,使设计出的开关电源具有电压自我调节功能。开关工作频率为50kHz,输出2路隔离的电压。设计流程:1熟悉UC384X、PC817、TL431的结构原理及作用。2多绕组高频变压器的设计。3输出级设计。4MOSFET开关管的选择及其驱动电路设计。5由PC817、TL431组成的反馈环路的设计。6输入整流滤波电路和输入启动电路的设计。第二章 开关电源的原理2.1 开关电源的基本原理 在线性电源中,功率晶体管工作在线性模式,线性电源的稳压是以牺牲调整管上的耐压来维持的,因此调整管的功耗成为了线性稳压电源的主要损耗。与线性稳压电源不同的是,开关电源
37、的功率开关管工作在开关(导通与截至)状态。在这两种状态中,加在功率开关管上的伏安乘积总是很小(在导通时,电压低,电流大;关断时,电压高,电流小)。功率器件上的伏安乘积就是功率开关管上所产生的损耗。不同于线性稳压电源,开关电源更为有效的电压控制方式是PWM(Pulse Width Modulation)控制方式,就是对脉冲的宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,然后通过滤波电路来等效的获得所需要的波形(含形状和幅值)。而开关电源多为对等幅脉冲进行控制,脉冲的占空比是开关电源的控制器来调节的。当输入电压被斩成交流方波,其输出幅值就可以通过高频变压器来升高或降低。通过改变高频变压器的
38、二次绕组个数就可以改变电压的输出路数。最后这些交流脉冲波形经过整流滤波后就得到所需的直流输出电压。 开关电源的基本工作工程: 1、交流输入经整流滤波变成直流; 2、控制器输出高频PWM信号控制开关管,将直流电压斩波成高频脉冲电压加到高频变压器初级绕组上; 3、高频变压器次级绕组感应出高频电压,经整流滤波供给负载;4、反馈环节从一部分输出电压采样得到误差电压,经误差放大后输入到控制器,控制占空比,以达到稳定输出电压的目的。2.2 开关电源的组成图2-2-1所示为开关电源的结构框图:图2-2-1 开关电源的结构框图 AC/DC转换电路是整流滤波电路。DC/DC转换器是开关电源中最重要的组成部分,有
39、以下几种基本类型:buck型、boost型、buck-boost型、正激式、反激式、推挽式、半桥式和全桥式转换器。因设计需求,本设计在主电路拓扑上采用单端反激式。下面就对这一结构主电路进行讨论分析。2.3 单端反激式拓扑分析2.3.1 DC-DC主回路拓扑结构方案一:主回路采用非隔离推挽式拓扑结构(如图2-3-1所示),只能获得低于输入电压的输出电压,且输出电压与输入电压不隔离,容易引起触电事故。2-3-1 非隔离式DC-DC结构方案二:主回路采用隔离推挽式拓扑结构(如图2-3-2所示),输入与输出电气不相连,通过开关变压器的磁偶合方式传递能量。2-3-2 隔离式DC-DC结构本设计采用方案二
40、。2.3.2 工作原理开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比调整输出电压,开关电源的工作原理可以用图2-3-3进行说明。图中输入的直流不稳定电压Ui经开关S加至输出端,S为受控开关,是一个受开关脉冲控制的开关调整管,若使开关S按要求改变导通或断开时间,就能把输入的直流电压Ui变成矩形脉冲电压。这个脉冲电压经滤波电路进行平滑滤波后就可得到稳定的直流输出电压Uo。(a) 电路图;(b) 波形图图2-3-3 开关电源的工作原理为方便分析开关电源电路,定义脉冲占空比如下 (1-1)式中,T表示开关S的开关重复周期;TON表示开关S在一个开关周期中的导通时间
41、。开关电源直流输出电压Uo与输入电压Ui之间有如下关系:Uo=UiD (1-2) 由式(1-1)和式(1-2)可以看出,若开关周期T一定,改变开关S的导通时间,即可改变脉冲占空比D,从而达到调节输出电压的目的。T不变,只改变来实现占空比调节的稳压方式叫做脉冲宽度调制(PWM)。由于PWM式的开关频率固定,输出滤波电路比较容易设计,易实现最优化,因此PWM式开关电源用得较多。若保持不变,利用改变开关频率f=1/T实现脉冲占空比调节,从而实现输出直流电压Uo稳压的方法,称做脉冲频率调制(PFM)。由于该方式的开关频率不固定,因此输出滤波电路的设计不易实现最优化。既改变,又改变T,实现脉冲占空比调节
42、的稳压方式称做脉冲调频调宽方式。在各种开关电源中,以上三种脉冲占空比调节的稳压方式均有应用。综合考虑本设计采用PWM稳压方式。2-3-4 单端反激式变换器拓扑结构 图2-3-4中变压器的初级绕组与次级绕组同名端相反,为输入直流电压,开关S为功率开关管,C为输出滤波电容,R为负载,为初级绕组电流,为次级绕组电流;和为输出电压和电流,参考方向如图中所示。单端反激式变换器又称电感储能式变换器,其变压器兼有储能、变压、隔离三重作用。所谓单端,指变压器磁芯仅工作在其磁滞回线的一侧。当功率开关管S导通时,直流输入电压加在初级绕组上,在变压器初级电感线圈中储存能量,由于次级绕组感应电压为上负下正,使二极管D
43、反偏截止,次级绕组中无电流,此时电能转化为磁能存储在初级电感中。当S截止时,初级感应电压极性反向,使次级绕组感应电压极性反转,二极管D导通,储存在变压器中的能量传递给输出电容C,同时给负载供电,磁能转化为电能释放出来。当开关管重新导通时,负载电流由电容C来提供,同时变压器初级绕组重新储能,如此反复。从以上电路分析可以看出,S导通时,次级绕组无电流;S截止时,次级绕组有电流,这就是“反激”的含义。根据次级绕组放电时间的不同,单端反激式变换器分为2种工作模式:不连续工作模式(DCM)和连续工作模式(CCM)。这两种工作模式的开关电流波形图分别如图2-3-5(a),(b)所示。 (a) 连续模式;
44、(b) 非连续模式2-3-5 两种模式的开关电流波 由图可见,在连续模式下,初级开关电流是从一定幅度开始增大的,上升到峰值再迅速回零。其开关电流波形成梯形。这表明,因为在连续模式下,储存在高频变压器中的能量在每个开关周期内并未全部释放掉,所以下一开管周期具有一个初始能量。采用连续模式可减小初级峰值电流IP和有效值电流IRMS,降低芯片的功耗。但连续模式要求增大初级电感量LF,这会导致高频变压器的体积增大。综上所述,连续模式适用于选输出功率较小的和尺寸较大的高频变压器。非连续模式的开关电流则是从零开始上升到峰值,再降至零的。这意味着储存在高频变压器中的能量必须在每形个开关周期内完全释放掉,其开关
45、电流波形呈三角形。非连续模式下的IP,IRMS值较大,但所需要的IP较小。因此,它适合采用输出功率较大的,配尺寸较小的高频变压器。 本设计采用不连续工作模式。 2.3.3 基本关系式1、共同关系式 开关管S导通期间,流过初级绕组Np的电流线性增长,其增量为: (2-3-1)式中T为开关周期,D为占空比。开关管S截止期间,流过次级绕组Ns的电流线性减小,设电流减小的时间是,则流过Ns的电流增量为: (2-3-2) 开关管S截止期间,Np上感应电压与电源电压一起加在开关管S的DS级上,DS级承受的电压为: (2-3-3) 2、连续工作模式: 如果电流连续,输出电压的表达式为: (2-3-4)3断续
46、工作模式:S导通期间,变压器初级绕组储存的能量,所以电源输入功率为 (2-3-5) 如果电流断续,S导通时起始电流为0,则,假设电路没有损耗,输入功率应与输出功率相等,设输出负载电阻为,则有 (2-3-6) 从而可以得到断续模式输出电压的表达式为 (2-3-7)由式(2-7)可知,在断续模式下,输出电压与输入电压和导通时间成正比,与负载电阻的平方根成正比。因此,断续模式下负载不能开路。 第三章 系统设计3.1 技术指标 本课题是针对现代电子设备对供电电源的需求,以220V市电为能源供应,经整流滤波、高频变压器、再经过输出整流滤波,得到电子设备所需的+5V、30V等电压。本课题设计的电源主电路拓扑采用单端反激式变换器结构,采用UC3844作为PWM主控IC,以实现电压和电流的双闭环控制,从而提高负载调整率,电压调整率,以达到电子设备对电源电压稳定性的要求,本电源开关频率设定在50kHz,同时输出2路相互隔离的电压。 技术指标如下: 3、主要技术指标; 1.额定输入电压:AC220V ;输入电压范围:120-270V; 2.输出电压: +30V