工程力学试题库及解答2406359.doc

上传人:豆**** 文档编号:17221549 上传时间:2022-05-22 格式:DOC 页数:32 大小:457KB
返回 下载 相关 举报
工程力学试题库及解答2406359.doc_第1页
第1页 / 共32页
工程力学试题库及解答2406359.doc_第2页
第2页 / 共32页
点击查看更多>>
资源描述

《工程力学试题库及解答2406359.doc》由会员分享,可在线阅读,更多相关《工程力学试题库及解答2406359.doc(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流工程力学试题库及解答2406359.精品文档.工程力学试题库及答案第一章 静力学基本概念1. 试写出图中四力的矢量表达式。已知:F1=1000N,F2=1500N,F3=3000N,F4=2000N。解:F=Fx+Fy=Fxi+FyjF1=1000N=-1000Cos30i-1000Sin30jF2=1500N=1500Cos90i- 1500Sin90jF3=3000N=3000 Cos45i+3000Sin45jF4=2000N=2000 Cos60i-2000Sin60j2. A,B两人拉一压路碾子,如图所示,FA=400N,为使碾子沿

2、图中所示的方向前进,B应施加多大的力(FB=?)。解:因为前进方向与力FA,FB之间均为45夹角,要保证二力的合力为前进方向,则必须FA=FB。所以:FB=FA=400N。3.试计算图中力F对于O点之矩。解:MO(F)=Fl4.试计算图中力F对于O点之矩。 解:MO(F)=05.试计算图中力F对于O点之矩。解: MO(F)= Flsin6. 试计算图中力F对于O点之矩。解: MO(F)= Flsin7. 试计算图中力F对于O点之矩。 解: MO(F)= -Fa8.试计算图中力F对于O点之矩。解:MO(F)= F(lr)9. 试计算图中力F对于O点之矩。解: 10.求图中力F对点A之矩。若r1=

3、20cm,r2=50cm,F=300N。解: 11.图中摆锤重G,其重心A点到悬挂点O的距离为l。试求图中三个位置时,力对O点之矩。解: 1位置:MA(G)=0 2位置:MA(G)=-Glsin 3位置:MA(G)=-Gl 12.图示齿轮齿条压力机在工作时,齿条BC作用在齿轮O上的力Fn=2kN,方向如图所示,压力角0=20,齿轮的节圆直径D=80mm。求齿间压力Fn对轮心点O的力矩。解:MO(Fn)=-FncosD/2=-75.2Nm受力图13.画出节点A,B的受力图。14. 画出杆件AB的受力图。15. 画出轮C的受力图。16.画出杆AB的受力图。17. 画出杆AB的受力图。18. 画出杆

4、AB的受力图。19. 画出杆AB的受力图。20. 画出刚架AB的受力图。21. 画出杆AB的受力图。22. 画出杆AB的受力图。23.画出杆AB的受力图。24. 画出销钉A的受力图。25. 画出杆AB的受力图。物系受力图26. 画出图示物体系中杆AB、轮C、整体的受力图。27. 画出图示物体系中杆AB、轮C的受力图。28.画出图示物体系中杆AB、轮C1、轮C2、整体的受力图。29. 画出图示物体系中支架AD、BC、物体E、整体的受力图。30. 画出图示物体系中横梁AB、立柱AE、整体的受力图。31. 画出图示物体系中物体C、轮O的受力图。32. 画出图示物体系中梁AC、CB、整体的受力图。33

5、.画出图示物体系中轮B、杆AB、整体的受力图。34.画出图示物体系中物体D、轮O、杆AB的受力图。35.画出图示物体系中物体D、销钉O、轮O的受力图。第二章 平面力系1. 分析图示平面任意力系向O点简化的结果。已知:F1=100N,F2=150N,F3=200N,F4=250N,F=F/=50N。解:(1)主矢大小与方位:F/RxFxF1cos45+F3+F4cos60100Ncos45+200N+250cos60395.7NF/RyFyF1sin45-F2-F4sin60100Nsin45-150N-250sin60-295.8N(2)主矩大小和转向:MOMO(F)MO(F1)+MO(F2)

6、+MO(F3)+MO(F4)+m 0-F20.3m+F30.2m+F4sin600.1m+F0.1m 0-150N0.3m+200N0.2m+250Nsin600.1m+50N0.1m 21.65Nm(Q)向O点的简化结果如图所示。2.图示起重吊钩,若吊钩点O处所承受的力偶矩最大值为5kNm,则起吊重量不能超过多少?解:根据O点所能承受的最大力偶矩确定最大起吊重量G0.15m5kNm G33.33kN3. 图示三角支架由杆AB,AC铰接而成,在A处作用有重力G,求出图中AB,AC所受的力(不计杆自重)。解:(1)取销钉A画受力图如图所示。AB、AC杆均为二力杆。(2)建直角坐标系,列平衡方程:

7、Fx0, -FAB+FACcos600Fy0, FACsin60-G0(3)求解未知量。 FAB0.577G(拉) FAC1.155G(压)4.图示三角支架由杆AB,AC铰接而成,在A处作用有重力G,求出图中AB,AC所受的力(不计杆自重)。解(1)取销钉A画受力图如图所示。AB、AC杆均为二力杆。(2)建直角坐标系,列平衡方程:Fx0, FAB-FACcos600Fy0, FACsin60-G0(3)求解未知量。 FAB0.577G(压) FAC1.155G(拉)5. 图示三角支架由杆AB,AC铰接而成,在A处作用有重力G,求出图中AB,AC所受的力(不计杆自重)。解(1)取销钉A画受力图如

8、图所示。AB、AC杆均为二力杆。(2)建直角坐标系,列平衡方程:Fx0, -FAB+Gsin300Fy0, FAC-G cos300(3)求解未知量。 FAB0.5G(拉) FAC0.866G(压)6. 图示三角支架由杆AB,AC铰接而成,在A处作用有重力G,求出图中AB,AC所受的力(不计杆自重)。解(1)取销钉A画受力图如图所示。AB、AC杆均为二力杆。(2)建直角坐标系,列平衡方程: Fx0, -FAB sin30+FAC sin300 Fy0, FAB cos30+FACcos30-G0(3)求解未知量。 FABFAC0.577G(拉)7. 图示圆柱A重力为G,在中心上系有两绳AB和A

9、C,绳子分别绕过光滑的滑轮B和C,并分别悬挂重力为G1和G2的物体,设G2G1。试求平衡时的角和水平面D对圆柱的约束力。解(1)取圆柱A画受力图如图所示。AB、AC绳子拉力大小分别等于G1,G2。(2)建直角坐标系,列平衡方程: Fx0, -G1+G2cos0 Fy0, FNG2sin-G0(3)求解未知量。8.图示翻罐笼由滚轮A,B支承,已知翻罐笼连同煤车共重G=3kN,=30,=45,求滚轮A,B所受到的压力FNA,FNB。有人认为FNA=Gcos,FNB=Gcos,对不对,为什么?解(1)取翻罐笼画受力图如图所示。(2)建直角坐标系,列平衡方程:Fx0, FNA sin-FNB sin0

10、Fy0, FNA cos+FNB cos-G0(3)求解未知量与讨论。将已知条件G=3kN,=30,=45分别代入平衡方程,解得:FNA2.2kN FNA1.55kN有人认为FNA=Gcos,FNB=Gcos是不正确的,只有在=45的情况下才正确。9.图示简易起重机用钢丝绳吊起重力G=2kN的重物,不计杆件自重、摩擦及滑轮大小,A,B,C三处简化为铰链连接;求AB和AC所受的力。解(1)取滑轮画受力图如图所示。AB、AC杆均为二力杆。(2)建直角坐标系如图,列平衡方程:Fx0, -FAB-Fsin45+Fcos600Fy0, -FAC-Fsin60-Fcos450(3)求解未知量。将已知条件F

11、=G=2kN代入平衡方程,解得:FAB-0.414kN(压) FAC-3.15kN(压)10. 图示简易起重机用钢丝绳吊起重力G=2kN的重物,不计杆件自重、摩擦及滑轮大小,A,B,C三处简化为铰链连接;求AB和AC所受的力。解:(1)取滑轮画受力图如图所示。AB、AC杆均为二力杆。(2)建直角坐标系如图,列平衡方程: Fx0, -FAB-FACcos45-Fsin300 Fy0, -FACsin45-Fcos30-F0(3)求解未知量。 将已知条件F=G=2kN代入平衡方程,解得:FAB2.73kN(拉) FAC-5.28kN(压) 11. 相同的两圆管置于斜面上,并用一铅垂挡板AB挡住,如

12、图所示。每根圆管重4kN,求挡板所受的压力。若改用垂直于斜面上的挡板,这时的压力有何变化?解(1)取两圆管画受力图如图所示。(2)建直角坐标系如图,列平衡方程: Fx0, FN cos30Gsin30Gsin300(3)求解未知量。 将已知条件G=4kN代入平衡方程,解得:F N4.61kN 若改用垂直于斜面上的挡板,这时的受力上图右 建直角坐标系如图,列平衡方程:Fx0, FNGsin30Gsin300 解得:F N4kN12. 构件的支承及荷载如图所示,求支座A,B处的约束力。解(1)取AB杆画受力图如图所示。支座A,B约束反力构成一力偶。(2)列平衡方程: Mi0 15kNm-24kNm

13、+FA6m0(3)求解未知量。FA1.5kN() FB1.5kN13. 构件的支承及荷载如图所示,求支座A,B处的约束力。解 (1)取AB杆画受力图如图所示。支座A,B约束反力构成一力偶。(2)列平衡方程: Mi0, FAlsin45-Fa0(3)求解未知量。 14. 构件的支承及荷载如图所示,求支座A,B处的约束力。解(1)取AB杆画受力图如图所示。支座A,B约束反力构成一力偶。(2)列平衡方程: Mi0, 20kN5m50kN3mFA2m0(3)求解未知量。 FA25kN() FB25kN()15. 图示电动机用螺栓A,B固定在角架上,自重不计。角架用螺栓C,D固定在墙上。若M=20kNm

14、,a=0.3m,b=0.6m,求螺栓A,B,C,D所受的力。解螺栓A,B受力大小(1)取电动机画受力图如图所示。螺栓A,B反力构成一力偶。(2)列平衡方程: Mi0, MFAa0(3)求解未知量。 将已知条件M=20kNm,a=0.3m代入平衡方程,解得:FAFB66.7kN螺栓C,D受力大小(1)取电动机和角架画受力图如图所示。螺栓C,D反力构成一力偶。(2)列平衡方程:Mi0, MFCb0(3)求解未知量。将已知条件M=20kNm,b=0.6m代入平衡方程,解得: FCFD33.3kN16. 铰链四连杆机构OABO1在图示位置平衡,已知OA=0.4m,O1B=0.6m,作用在曲柄OA上的力

15、偶矩M1=1Nm,不计杆重,求力偶矩M2的大小及连杆AB所受的力。解求连杆AB受力(1)取曲柄OA画受力图如图所示。连杆AB为二力杆。(2)列平衡方程: Mi0, M1FABOAsin300(3)求解未知量。 将已知条件M1=1Nm,OA=0.4m,代入平衡方程,解得:FAB5N;AB杆受拉。求力偶矩M2的大小(1)取铰链四连杆机构OABO1画受力图如图所示。FO和FO1构成力偶。(2)列平衡方程: Mi0, M1M2FO(O1BOAsin30)0(3)求解未知量。将已知条件M1=1Nm,OA=0.4m,O1B=0.6m代入平衡方程,解得:M23Nm17. 上料小车如图所示。车和料共重G=24

16、0kN,C为重心,a=1m,b=1.4m,e=1m,d=1.4m,=55,求钢绳拉力F和轨道A,B的约束反力。解(1)取上料小车画受力图如图所示。(2)建直角坐标系如图,列平衡方程:Fx0,F-Gsin0Fy0,FNA+FNB-Gcos0MC(F)0, -F(de)-FNAa+FNBb0(3)求解未知量。 将已知条件G=240kN,a=1m,b=1.4m,e=1m, d=1.4m,=55代入平衡方程,解得: FNA47.53kN;FNB90.12kN;F196.6kN 18. 厂房立柱的一端用混凝土砂浆固定于杯形基础中,其上受力F=60kN,风荷q=2kN/m,自重G=40kN,a=0.5m,

17、h=10m,试求立柱A端的约束反力。解(1)取厂房立柱画受力图如图所示。A端为固定端支座。(2)建直角坐标系如图,列平衡方程:Fx0, qhFAx0Fy0, FAyGF0MA(F)0, qhh/2FaMA0(3)求解未知量。 将已知条件F=60kN,q=2kN/m,G=40kN,a=0.5m,h=10m代入平衡方程,解得:FAx20kN();FAy100kN();MA130kNm(Q)19. 试求图中梁的支座反力。已知F=6kN。解(1)取梁AB画受力图如图所示。(2)建直角坐标系,列平衡方程:Fx0, FAx-Fcos450Fy0,FAy-Fsin45+FNB0MA(F)0, -Fsin45

18、2m+FNB6m0(3)求解未知量。 将已知条件F=6kN代入平衡方程。解得: FAx4.24kN();FAy 2.83kN();FNB1.41kN()。20. 试求图示梁的支座反力。已知F=6kN,q=2kN/m。解(1)取梁AB画受力图如图所示。(2)建直角坐标系,列平衡方程: Fx0, FAx-Fcos300 Fy0, FAy-q1m-Fsin300 MA(F)0, -q1m1.5m-Fsin301m+MA0(3)求解未知量。 将已知条件F=6kN,q=2kN/m代入平衡方程,解得: FAx5.2kN(); FAy5kN(); MA6kNm(Q)。21. 试求图示梁的支座反力。已知q=2

19、kN/m,M=2kNm。解(1)取梁AB画受力图如图所示。因无水平主动力存在,A铰无水平反力。(2)建直角坐标系,列平衡方程: Fy0, FA-q2m+FB0 MA(F)0, -q2m2m+FB3m+M0(3)求解未知量。将已知条件q=2kN/m,M=2kNm代入平衡方程,解得: FA2kN();FB2kN()。22.试求图示梁的支座反力。已知q=2kN/m,l=2m,a=1m。解(1)取梁AB画受力图如图所示。(2)建直角坐标系,列平衡方程: Fx0, FAx-qa0 Fy0, FAy0 MA(F)0, -qa0.5a+MA0(3)求解未知量。 将已知条件q=2kN/m,M=2kNm,a=1

20、m代入平衡方程,解得: FAx2kN();FAy0; MA1kNm(Q)。23. 试求图示梁的支座反力。已知F=6kN,q=2kN/m,M=2kNm,a=1m。解(1)取梁AB画受力图如图所示。因无水平主动力存在,A铰无水平反力。(2)建直角坐标系,列平衡方程: Fy0, FA-qaFB-F0 MA(F)0, qa0.5a+FB2a-M-F3a0(3)求解未知量。将已知条件F=6kN,q=2kN/m,M=2kNm,a=1m代入平衡方程,解得: FA-1.5kN();FB9.5kN()。24. 试求图示梁的支座反力。已知F=6kN,M=2kNm,a=1m。解(1)取梁AB画受力图如图所示。(2)

21、建直角坐标系,列平衡方程: Fx0, FAFBx0 Fy0, FByF0 MB(F)0, -FAa+Fa+M0(3)求解未知量。将已知条件F=6kN,M=2kNm,a=1m代入平衡方程,解得: FA8kN();FBx8kN();FBy6kN()。25. 试求图示梁的支座反力。已知F=6kN,M=2kNm,a=1m。解(1)取梁AB画受力图如图所示。(2)建直角坐标系如图,列平衡方程: Fx0, FAx-FBsin300 Fy0, FAy-F+FBcos300 MA(F)0, -Fa-FBsin30a+FBcos302a+M0(3)求解未知量。将已知条件F=6kN,M=2kNm,a=1m代入平衡

22、方程,解得:FB3.25kN();FAx1.63kN();FAy3.19kN().26. 试求图示梁的支座反力。已知F=6kN,a=1m。解:求解顺序:先解CD部分再解AC部分。解CD 部分(1)取梁CD画受力图如图所示。(2)建直角坐标系,列平衡方程: Fy0, FC-F+FD0 MC(F)0, -FaFD2a0(3)求解未知量。将已知条件F=6kN代入平衡方程, 解得: FC3kN;FD3kN()解AC部分 (1)取梁AC画受力图如图所示。(2)建直角坐标系,列平衡方程:Fy0, -F/C-FAFB0 MA(F)0, -F/C2aFBa0(3)求解未知量。将已知条件F/C =FC=3kN代

23、入平衡方程,解得:FB6kN();FA3kN()。梁支座A,B,D的反力为: FA3kN();FB6kN();FD3kN()。27. 试求图示梁的支座反力。已知F=6kN,q=2kN/m,M=2kNm,a=1m。解:求解顺序:先解CD部分再解ABC部分。解CD部分(1)取梁CD画受力图如上左图所示。(2)建直角坐标系,列平衡方程:Fy0, FC-qa+FD0MC(F)0, -qa0.5a +FDa0(3)求解未知量。 将已知条件q=2kN/m,a=1m代入平衡方程。解得:FC1kN;FD1kN()解ABC部分(1)取梁ABC画受力图如上右图所示。(2)建直角坐标系,列平衡方程:Fy0, -F/

24、C+FA+FB-F0MA(F)0, -F/C2a+FBa-Fa-M0(3)求解未知量。将已知条件F=6kN,M=2kNm,a=1m,F/C = FC=1kN代入平衡方程。解得: FB10kN();FA-3kN()梁支座A,B,D的反力为:FA-3kN();FB10kN();FD1kN()。28.试求图示梁的支座反力。解:求解顺序:先解IJ部分,再解CD部分,最后解ABC部分。解IJ部分:(1)取IJ部分画受力图如 右图所示。(2)建直角坐标系,列平衡方程: Fy0, FI-50kN-10kN+FJ0 MI(F)0, -50kN1m-10kN5m+FJ2m0(3)求解未知量。 解得: FI10k

25、N; FJ50kN解CD部分:(1)取梁CD画受力图如图所示。(2)建直角坐标系,列平衡方程: Fy0, FC-F/J+FD0 MC(F)0,-F/J1m+FD8m0(3)求解未知量。 将已知条件F/J = FJ=50kN代入平衡方程。解得:FC43.75kN;FD6.25kN()解ABC部分:(1)取梁ABC画受力图如图所示。(2)建直角坐标系,列平衡方程: Fy0, -F/C-F/I-FA+FB0 MA(F)0,-F/C8m+FB4m-F/I 7m0(3)求解未知量。 将已知条件F/I = FI=10kN,F/C = FC=43.75kN代入平衡方程。解得: FB105kN();FA51.

26、25kN()梁支座A,B,D的反力为:FA51.25kN();FB105kN();FD6.25kN()。29.试求图示梁的支座反力。已知q=2kN/m,a=1m。解:求解顺序:先解BC段,再解AB段。 BC段 AB段1、解BC段(1)取梁BC画受力图如上左图所示。(2)建直角坐标系,列平衡方程: Fy=0, FC-qa+FB=0 MB(F)=0, -qa0.5a +FC2a=0(3)求解未知量。 将已知条件q=2kN/m,a=1m代入平衡方程。解得: FC=0.5kN();FB=1.5kN2、解AB段(1)取梁AB画受力图如图所示。(2)建直角坐标系,列平衡方程: Fy=0, FA-qa-F/

27、B=0 MA(F)=0, -qa1.5aMA-F/B2a=0(3)求解未知量。将已知条件q=2kN/m,M=2kNm,a=1m,F/B=FB=1.5kN代入平衡方程,解得: FA=3.5kN();MA=6kNm(Q)。梁支座A,C的反力为: FA=3.5kN();MA=6kNm(Q);FC=0.5kN()30. 试求图示梁的支座反力。已知F=6kN,M=2kNm,a=1m。解:求解顺序:先解AB部分,再解BC部分。 1、解AB部分(1)取梁AB画受力图如图所示。(2)建直角坐标系,列平衡方程: Fy=0, FA-F+FB=0 MA(F)=0,-Fa+FB a=0(3)求解未知量。 将已知条件F

28、=6kN,a=1m代入平衡方程。解得:FA=0;FB=6kN2、解BC部分(1)取梁BC画受力图如图所示。(2)建直角坐标系,列平衡方程: Fy=0, FC-F/B=0 MC(F)=0, F/B2aMMC=0(3)求解未知量。将已知条件M=2kNm,a=1m,F/B=FB=6kN代入平衡方程。解得:FC=6kN();MC=14kNm(P)。梁支座A,C的反力为:FA=0;MC=14kNm(P);FC=6kN()31. 水塔固定在支架A,B,C,D上,如图所示。水塔总重力G=160kN,风载q=16kN/m。为保证水塔平衡,试求A,B间的最小距离。解(1)取水塔和支架画受力图如图所示。当AB间为

29、最小距离时,处于临界平衡,FA=0。(2)建直角坐标系,列平衡方程: MB(F)0, -q6m21m+G0.5lmin0(3)求解未知量。将已知条件G=160kN,q=16kN/m代入平衡方程,解得:lmin2.52m32. 图示汽车起重机车体重力G1=26kN,吊臂重力G2=4.5kN,起重机旋转和固定部分重力G3=31kN。设吊臂在起重机对称面内,试求汽车的最大起重量G。解:(1)取汽车起重机画受力图如图所示。当汽车起吊最大重量G时,处于临界平衡,FNA=0。(2)建直角坐标系,列平衡方程:MB(F)=0, -G22.5m+Gmax5.5m+G12m=0(3)求解未知量。将已知条件G1=2

30、6kN,G2=4.5kN代入平衡方程,解得:Gmax=7.41kN33. 汽车地秤如图所示,BCE为整体台面,杠杆AOB可绕O轴转动,B,C,D三点均为光滑铰链连接,已知砝码重G1,尺寸l,a。不计其他构件自重,试求汽车自重G2。解:(1)分别取BCE和AOB画受力图如图所示。(2)建直角坐标系,列平衡方程:对BCE列Fy0, FByG20对AOB列MO(F)0, F/ByaFl0(3)求解未知量。将已知条件FBy=F/By,F=G1代入平衡方程,解得:G2lG1/a34. 驱动力偶矩M使锯床转盘旋转,并通过连杆AB带动锯弓往复运动,如图所示。设锯条的切削阻力F=5kN,试求驱动力偶矩及O,C

31、,D三处的约束力。解:求解顺序:先解锯弓,再解锯床转盘。 1、解锯弓(1)取梁锯弓画受力图如图所示。(2)建直角坐标系,列平衡方程: FX=0,F-FBAcos15=0 Fy=0, FD+FBAsin15-FC=0 MB(F)=0, -FC0.1m+FD0.25m+F0.1m=0(3)求解未知量。 将已知条件F=5kN代入平衡方程。解得: FBA=5.18kNFD=-2.44kN()FC=-1.18kN()2、解锯床转盘(1)取锯床转盘画受力图如图所示。(2)建直角坐标系,列平衡方程: FX=0, FABcos15-FOX=0 Fy=0, FOy-FABsin15=0 MO(F)=0, -FA

32、Bcos150.1m+M=0(3)求解未知量。将已知条件FAB=FBA=5.18kN代入平衡方程,解得 :FOX=5kN()FOy=1.34kN()M=500Nm(Q)35. 图示为小型推料机的简图。电机转动曲柄OA,靠连杆AB使推料板O1C绕轴O1转动,便把料推到运输机上。已知装有销钉A的圆盘重G1=200N,均质杆AB重G2=300N,推料板O1C重G=600N。设料作用于推料板O1C上B点的力F=1000N,且与板垂直,OA=0.2m,AB=2m,O1B=0.4m,=45。若在图示位置机构处于平衡,求作用于曲柄OA上之力偶矩M的大小。解:(1)分别取电机O,连杆AB,推料板O1C画受力图

33、如图所示。(2)取连杆AB为研究对象 MA(F)0, -F/By2m-G21m0 MB(F)0, -FAy2m+G21m0 Fx0, FAx-F/Bx0将已知条件G2=300N代入平衡方程,解得:FAy=150N;F/By=150N;FAxF/Bx(3)取推料板O1C为研究对象MO1(F)0, -FBx0.4msin+G0.4mcos-FBy0.4mcos+F0.4m0将已知条件G=600N,=45,F=1000N,F/ByFBy-150N代入平衡方程,解得: FBx=2164N FAxF/Bx2164N(4)取电机O为研究对象 MO(F)0, -F/Ax0.2mcos+F/Ay0.2msin

34、+M0将已知条件FAxF/Ax2164N,FAyF/Ay150N,=45代入平衡方程,解得:M285Nm。36. 梯子AB重力为G=200N,靠在光滑墙上,梯子的长l=3m,已知梯子与地面间的静摩擦因素为0.25,今有一重力为650N的人沿梯子向上爬,若=60,求人能够达到的最大高度。解: 设能够达到的最大高度为h,此时梯子与地面间的摩擦力为最大静摩擦力。(1)取梯子画受力图如图所示。(2)建直角坐标系,列平衡方程: Fy0, FNBGG人0 MA(F)0,-G0.5lcos-G人(l-h/sin)cos-Ffmlsin+FNBlcos0FfmfS FNB(3)求解未知量。 将已知条件G=20

35、0N,l=3m,fS0.25,G人650N,=60代入平衡方程。解得:h=1.07mm37. 砖夹宽280mm,爪AHB和BCED在B点处铰接,尺寸如图所示。被提起的砖重力为G,提举力F作用在砖夹中心线上。若砖夹与砖之间的静摩擦因素fS=0.5,则尺寸b应为多大,才能保证砖夹住不滑掉?解:由砖的受力图与平衡要求可知:F fm0.5G0.5F;FNAFNB至少要等于Ffm/fsFG再取AHB讨论,受力图如图所示:要保证砖夹住不滑掉,图中各力对B点逆时针的矩必须大于各力对B点顺时针的矩。 即:F0.04mF/ fm0.1mF/NAb代入F fmF/ fm0.5G0.5F;FNAF/NAFG可以解得

36、:b0.09m9cm38. 有三种制动装置如图所示。已知圆轮上转矩为M,几何尺寸a,b,c及圆轮同制动块K间的静摩擦因素fS。试求制动所需的最小力F1的大小。解:(1)取圆轮、制动装置画受力图如图所示。(2)建直角坐标系,列平衡方程:取圆轮列平衡方程:MO(F)0, -Ffmr+M0 FfmfS FN 解得FfmM/r; FNM/rfS取制动装置列平衡方程: MA(F)0, -F1b-F/fmc+F/ Na0解得:39. 有三种制动装置如图所示。已知圆轮上转矩为M,几何尺寸a,b,c及圆轮同制动块K间的静摩擦因素fS。试求制动所需的最小力F2的大小。解:(1)取圆轮、制动装置画受力图如图所示。

37、(2)建直角坐标系,列平衡方程:取圆轮列平衡方程:MO(F)0, -Ffmr+M0 FfmfS FN 解得FfmM/r; FNM/rfS取制动装置列平衡方程:MA(F)0, -F2b+F/ Na0 解得:40.有三种制动装置如图所示。已知圆轮上转矩为M,几何尺寸a,b,c及圆轮同制动块K间的静摩擦因素fS。试求制动所需的最小力F3的大小。解:(1)取圆轮、制动装置画受力图如图所示。(2)建直角坐标系,列平衡方程:取圆轮列平衡方程:MO(F)0, -Ffmr+M0 FfmfS FN 解得FfmM/r; FNM/rfS取制动装置列平衡方程:MA(F)0, -F3bF/fmcF/ Na0 解得:第三

38、章 重心和形心1.试求图中阴影线平面图形的形心坐标。解:建立直角坐标系如图,根据对称性可知,。只需计算。根据图形组合情况,将该阴影线平面图形分割成一个大矩形减去一个小矩形。采用幅面积法。两个矩形的面积和坐标分别为:2.试求图中阴影线平面图形的形心坐标。3.试求图中阴影线平面图形的形心坐标。4. 试求图中阴影线平面图形的形心坐标。5. 试求图中阴影线平面图形的形心坐标。6. 图中为混凝土水坝截面简图,求其形心位置。第四章 轴向拉伸与压缩1. 拉杆或压杆如图所示。试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。解:(1)分段计算轴力 杆件分为2段。用截面法取图示研究对象画受力图如图,列平衡方程

39、分别求得: FN1=F(拉);FN2=-F(压)(2)画轴力图。根据所求轴力画出轴力图如图所示。2. 拉杆或压杆如图所示。试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。解:(1)分段计算轴力 杆件分为3段。用截面法取图示研究对象画受力图如图,列平衡方程分别求得: FN1=F(拉);FN2=0;FN3=2F(拉)(2)画轴力图。根据所求轴力画出轴力图如图所示。3. 拉杆或压杆如图所示。试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。解:(1)计算A端支座反力。由整体受力图建立平衡方程: Fx0,2kN-4kN+6kN-FA0 FA4kN()(2)分段计算轴力 杆件分为3段。用截面法取图

40、示研究对象画受力图如图,列平衡方程分别求得: FN1=-2kN(压);FN2=2kN(拉);FN3=-4kN(压)(3)画轴力图。根据所求轴力画出轴力图如图所示。4. 拉杆或压杆如图所示。试用截面法求各杆指定截面的轴力,并画出各杆的轴力图。解:(1)分段计算轴力 杆件分为3段。用截面法取图示研究对象画受力图如图,列平衡方程分别求得: FN1=-5kN(压); FN2=10kN(拉); FN3=-10kN(压)(2)画轴力图。根据所求轴力画出轴力图如图所示。5. 圆截面钢杆长l=3m,直径d=25mm,两端受到F=100kN的轴向拉力作用时伸长l=2.5mm。试计算钢杆横截面上的正应力和纵向线应变。解:6. 阶梯状直杆受力如图所示。已知AD段横截面面积AAD=1000mm2,DB段横截面面积ADB=500mm2,材料的弹性模量E=200GPa。求该杆的总变形量lAB。解:由截面法可以计算出AC,CB段轴力FNAC=-50kN(压),FN

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁