《发动机电控系统传感器故障诊断与检测.doc》由会员分享,可在线阅读,更多相关《发动机电控系统传感器故障诊断与检测.doc(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流发动机电控系统传感器故障诊断与检测.精品文档.宜宾职业技术学院毕业论文题目:发动机电控系统传感器故障诊断与检测系 部 现代制造工程系 专 业 名 称 汽车运用技术专业 班 级 汽车1092班 姓 名 杨 明 辉 学 号 200911661 指 导 教 师 赵 凯 2011年9月22日发动机电控系统传感器故障诊断与检测摘 要发动机电控系统传感器在汽车上的运用越显突出,对汽车的性能有着重要的影响。本文就十种常见的传感器的结构及工作原理进行了介绍与分析,并列举出一些相关的数据作为参考,对部分常见传感器故障进行了故障诊断与分析,并且介绍了一些检测方法
2、。通过对这些传感器的结构、工作原理和故障的分析,总结出这些传感器在工作时是否需要加电、能量是如何转换的,以及寻找故障的技巧和排除方法。关键词:发动机;电控系统; 传感器; 故障诊断The Engine Electricity Controls System to Spread the Feeling Machine Fault Diagnosis and ExaminationAbstract Author: Yang Ming-hui Tutor:Zhao KaiThe engine electricity controls system to spread feeling machine
3、to more show overhang in the usage on the autocar and have the important impact on the performance of autocar. This text carried on introduction and analysis for ten kinds of structures and operate priniple that familiarly spread a feeling machine and was juxtaposed to enumerate some related datas a
4、s references and familiarly spread a feeling machine to carry on fault diagnosis and analysis to the fraction, and introduced some examination methods. Pass vs these structures that spread a feeling machine and work the analysis of priniple and fault, tally up these spread a feeling machine in the w
5、orking hours whether needs to apply electricity, energy is how to convert, and look for the skill and removal method of fault.Keywords:Engine; The electricity controls system; Spread a feeling machine; The fault diagnoses目 录1 前言12 传感器的结构及工作原理22.1 空气流量传感器22.2 进气(歧管绝对)压力传感器32.3 节气门位置传感器42.4 曲轴和凸轮轴位置传感
6、器62.5 进气温度传感器102.6 冷却液温度传感器112.7 氧传感器112.8 爆燃传感器132.9 光电式车速传感器143 发动机电控系统传感器检测方法163.1 节气门位置传感器163.2 进气温度传感器173.3 冷却液温度传感器184 各类传感器的总结205 传感器故障案例分析215.1 故障案例一 桑塔纳2000GSi轿车发动机怠速不稳215.2 故障案例二 现代索纳塔汽车转速忽高忽低215.3 故障案例三 奥迪100 2.6E轿车冷车不易起动22结论23致谢24参考文献25附录1:学术论文复印件261 前 言现代汽车技术发展越来越多的部件采用电子控制。传感器有用来测定各种流体
7、温度和压力(如进气温度、气道压力、冷却水温和燃油喷射压力等)的传感器;有用来确定各部分速度和位置的传感器(如车速、节气门开度、凸轮轴、曲轴、排气再循环阀(EGR)的位置等);还有用于测量发动机负荷、爆震、断火及废气中含氧量的传感器;在防抱死制动系统和悬架控制装置中测定车轮转速、路面高差的传感器。这些传感器向发动机的电子控制单元(ECU)提供发动机的工作状况信息,供ECU对发动机工作状况进行精确控制,以提高发动机的动力性、降低油耗、减少废气排放和进行故障检测。它们各司其职,一旦某个传感器失灵,对应的装置工作就会不正常甚至不工作。可见,传感器在汽车上的作用是很重要的。本文我就其中十种传感器进行了比
8、较,对其种类、结构、及其工作原理进行了介绍与分析,还收集了几个较好的案例,比较详细、具体的介绍了故障分析方法和步骤,让读者对传感器有更深层次的理解。2 传感器的结构及工作原理2.1 空气流量传感器(1)空气流量传感器类型空气流量传感器有叶片式、卡门旋涡式、热线式和热膜式。其中,叶片式、卡门旋涡式空气流量传感器测量空气的体积量,为体积流量型。热膜式空气流量传感器是对热线式空气流量传感器的改进,由电子元件对空气的质量进行检测,是质量流量型,进气阻力小、精度高。(2)空气流量传感器的作用空气流量传感用来测量发动机的进气量,并将信号输入ECU,作为燃油喷射和点火控制的主控制信号。(3)空气流量传感器的
9、结构及工作原理热线式空气流量传感器由感知空气流量的白金热线(铂金属线)、根据进气温度进行修正的温度补偿电阻、控制热线电流并产生输出信号的控制线路板以及传感器的壳体等组成。如图2-1所示,热线布置在一个支承环内,它的阻值随温度变化,是单臂电图2-1热线式空气流量传感器内部电路图桥电路的一个臂,热线支承环前端的塑料护套内安装了一个白金薄膜电阻器,其阻值随进气温度变化,称为温度补偿电阻(Rk), 是单臂电桥电路的另一个臂。热线温度由混合集成电路A保持其温度与吸入空气温度相差一定值,当空气流量增大时,混合集成电路A就使热线通过的电流加大,反之就减小。这样就使通过热线RH的电流是空气流量的单一函数,及热
10、线电流IH随空气流量增大而增大,或随其减小而减小。通过对结构和工作原理的分析可知,热线式空气流量传感器在使用中需要加电,通5V电压在端子4上,以便在电桥电路的电阻发生变化时提供电源,保证电桥电路输出电压信号;端子1是一个空脚;端子2接燃油泵继电器,通12V电压;端子3是负信号线;端子5是正信号线。2.2 进气(歧管绝对)压力传感器(1)进气歧管压力传感器类型进气歧管压力传感器有压敏电阻式、压敏电容式两种。(2)进气歧管压力传感器的作用进气歧管压力传感器用于D型燃油喷射系统。进气歧管压力传感器在燃油喷射系统中起到的作用和空气流量传感器相似,是一种间接测量发动机进气量的传感器。并将信号输入ECU,
11、作为燃油喷射和点火控制的主控制信号。(3)进气歧管压力传感器的结构及工作原理半导体压敏电阻式进气歧管压力传感器由硅膜片、集成电路、滤清器、真空室、和壳体等组成。利用半导体的压阻效应制成的硅膜片是压力转换元件,硅膜片的一侧是真空室,另一侧是进气的受压室。发动机工作时,从进气管来的空气经传感器的滤清器滤清后作用在硅膜片上,硅膜片产生变形(由于进气量对应着相应的进气压力,故进气流量越大,进气歧管压力就越高,硅膜片变形就越大,其变形量与压力成正比)。硅膜片的变形使扩散在硅膜片上电阻的阻值改变,从而导致混合集成电路的输出电压发生变化。实际上,进气歧管压力传感器是测的进气歧管内绝对压力(真空度)的变化,并
12、转换成电压信号,输送给电控单元(ECU),此信号成为ECU计算进入气缸空气量的主要依据。通过对结构和工作原理的分析可知,进气歧管压力传感器在使用中需要加电,3号端子作为ECU供电端子(图2-2进气歧管压力传感器连接插头图),供给一个较稳定的5V电压,当热敏电阻阻值发生变化时,端子4(进气压力信号端子)输出的信号电压就发生变化,输入电控单元ECU,从而计算比较进气压力图2-2 进气歧管压力传感器连接插头图有无变化。其中端子1通过控制单元ECU接地,端子2为进气温度信号端子。2.3 节气门位置传感器(1)节气门位置传感器类型节气门位置传感器有触点开关式、线性可变电阻式、组合式三种。(2)节气门位置
13、传感器作用检测节气门的开度(发动机负荷),并且转换成电信号传输给ECU,作为ECU判定发动机运转工况的依据,不同的开度意味着不同的运转工况,ECU以此对燃油喷射及EGR废弃再循环等其他系统进行控制。(3)节气门位置传感器的工作原理线性可变电阻式节气门位置传感器是一种线性电位计,电位计的滑动触点由节气门轴带动。不同的节气门开度,电位计的电阻值不同,从而将节气门的开度转变为电阻或电压信号输送给微机。微机通过节气门位置传感器可获得表示节气门由全闭到全开的所有开启角度的连续变化的模拟信号,以及节气门开度的变化速率,从而更精确地判定发动机的运行工况,提高控制精度和效果。综合型节气门位置传感器有一个怠速触
14、点。节气门全闭时,怠速输出触点接通,传感器输出怠速信号,这时电控单元将指令喷油器增加喷油量以加浓混合气。桑塔纳2000GSi AJR发动机没有专门设置的节气门位置传感器,节气门电位计G69和节气门控制器电位计G88,这两个部件起着节气门位置传感器的作用。节气门控制组件J338将节气门电位计G69、节气门控制器电位计G88、节气门控制器V60及怠速开关F60合为一体,如图2-3所示。图2-3 节气门控制组件电路图与连接插头节气门电位计G69直接与节气门轴相连接,当驾驶员踩动加速踏板时,节气门轴转动,节气门电位计轴也同是转动,使其电阻发生变化,这个信号传至ECU以告知节气门打开的位置。同时,节气门
15、控制器电位计G88将怠速范围内节气门控制器的位置情况告知ECU。怠速开关F60用以向发动机ECU提供怠速位置信号。节气门控制器V60起着控制怠速的作用,当怠速开关F60闭合时,由节气门控制器V60来决定怠速时节气门的开度,所以AJR发动机没有怠速控制阀。节气门控制组件由发动机控制单元ECU控制,控制单元收到怠速开关F60、节气门电位计G69和节气门控制器电位计G88有关目前节气门位置的信号后,控制节气门控制器V60动作,使发动机转速稳定在规定的怠速转速范围内。2.4 曲轴和凸轮轴位置传感器(1)曲轴和凸轮轴位置传感器功用与类型 曲轴位置传感器(Crankshaft Position Senso
16、r,简称CPS)也称曲轴转角传感器,用来检测曲轴转角和发动机转速信号,输送给ECU,以便确定燃油喷射的时刻和最佳点火时刻。凸轮轴位置传感器(Camshaft Position Sensor,简称CPS),为了区别于曲轴位置传感器(CPS),凸轮轴位置传感器一般都用CIS表示。凸轮轴位置传感器的作用是采集配气凸轮轴的位置信号,输送给ECU,以便ECU确定第一缸压缩上止点,从而进行顺序喷油控制、点火时刻控制;同时,还用于发动机启动时识别第一次点火时刻,因此也称为判缸传感器。曲轴位置传感器和凸轮轴位置传感器有三种型式:电磁式、霍尔效应式(桑塔纳2000型轿车和北京切诺基)、光电式位置传感器。位置传感
17、器型式不同,其控制方式和控制精度也不同。(2)磁感应式曲轴与凸轮轴位置传感器结构磁感应式传感器是一种无需工作电压的传感器,在绝缘外壳中,按顺序装有导磁铁芯、感应线圈、磁钢,其特征是:导磁铁芯与磁钢连接后置于感应线圈内,感应线圈的两输出端与屏蔽连接电缆相连接。(3)磁感应式曲轴与凸轮轴位置传感器工作原理 图2-4 磁感应式传感器工作原理a) 接近 b) 对正 c) 离开1-信号转子 2-传感线圈 3-永久磁铁磁感应式传感器的工作原理如图2-4所示,磁力线穿过的路径为永久磁铁N极一定子与转子间的气隙一转子凸齿一转子凸齿与定子磁头间的气隙一磁头一导磁板一永久磁铁S极。当信号转子旋转时,磁路中的气隙就
18、会周期性地发生变化,磁路的磁阻和穿过信号线圈磁头的磁通量随之发生周期性变化。根据电磁感应原理,传感线圈中就会感应产生交变电动势。磁感应式传感器工作时,信号转子按顺时针方向旋转,转子凸齿与磁头间的气隙减小,磁路磁阻减小,磁通量增多,当转子凸齿接近磁头边缘时,磁通量急剧增多,磁通变化率最大t=(t)max,感应电动势E最高(E=Emax)。当转子凸齿离开磁头边缘时,急剧增少,E最低(负向最大)。即电动势出现一次最大值和一次最小值,传感线圈也就相应地输出一个交变电压信号。磁感应式传感器的突出优点是不需要外加电源,永久磁铁起着将机械能变换为电能的作用,其磁能不会损失。当发动机转速变化时,转子凸齿转动的
19、速度将发生变化,铁心中的磁通变化率也将随之发生变化。转速越高,磁通变化率就越大,传感线圈中的感应电动势也就越高。由于转子凸齿与磁头间的气隙直接影响磁路的磁阻和传感线圈输出电压的高低,因此在使用中,转子凸齿与磁头间的气隙不能随意变动。气隙如有变化,必须按规定进行调整,气隙一般设计在0.20.4mm范围内。发动机在运行过程中,若没有收到凸轮轴位置传感器信号,发动机照常运行。但重新起动时,ECU无法判断1缸压缩上止点位置,则需要重复几次,直到点火模块选择到恰当的点火线圈,此时的点火提前角和点火时间控制按曲轴位置传感器确定,并且是固定的点火提前角。一般来说,凸轮轴位置传感器在汽车行驶中出现问题时,因为
20、发动机性能不会受到影响,驾驶员是感觉不出来的。(4)霍尔式曲轴与凸轮轴位置传感器 1) 霍尔效应 半导体或金属薄片置于磁场中,当有电流(与磁场垂直的薄片平面方向)流过时,在垂直于磁场和电流的方向上产生电动势,这种现象称为霍尔效应。2) 霍尔传感器元件 目前常用的霍尔材料锗(Ge)、硅(Si)、锑化铟(InSb)、砷化铟(InAs)等。N型锗容易加工制造,霍尔系数、温度性能、线性度较好;P型硅的线性度最好,霍尔系数、温度性能同N型锗,但电子迁移率较低,带负载能力较差,通常不作单个霍尔元件。3) 捷达、桑塔纳轿车霍尔式凸轮轴位置传感器结构特点图2-5 霍尔式凸轮轴位置传感器结构1-凸轮轴 2-霍尔
21、信号发生器 3-传感器固定螺钉4-定位螺栓与座圈 5-信号转子 6-发动机缸盖捷达AT和GTx、桑塔纳2000GSi型轿车采用的霍尔式凸轮轴位置传感器安装在发动机进气凸轮轴的一端,结构如图2-5所示。它主要由霍尔信号发生器和信号转子组成。信号转子又称为触发叶轮,安装在进气凸轮轴上,用定位螺栓和座圈定位固定。信号转子的隔板又称为叶片,在隔板上制有一个窗口,窗口对应产生的信号为低电平信号,隔板(叶片)对应产生的信号为高电平信号。霍尔式信号发生器主要由霍尔集成电路、永久磁铁和导磁钢片等组成。霍尔集成电路由霍尔元件、放大电路、稳压电路、温度补偿电路、信号变换电路和输出电路等组成。霍尔元件用硅半导体材料
22、制成,与永久磁铁之间留有0.20.4mm的间隙,当信号转子随进气凸轮轴一同转动时,隔板和窗口便从霍尔集成电路与永久磁铁之间的气隙中转过。如图2-6所示,该传感器接线插座上有三个引线端子,端子1为传感器电源正极端子,与控制单元端子62连接:端子2为传感器信号输出端子,与控制单元端子76连接:端子3为传感器电源负极端子,与控制单元端子67连接。图2-6 霍尔式凸轮轴位置传感器端子接线a) 接线 b) 端子4) 霍尔式凸轮轴位置传感器工作原理霍尔式传感器工作时,当隔板(叶片)进入气隙(即在气隙内)时,霍尔元件不产生电压,传感器输出高电平(5V)信号;当隔板(叶片)离开气隙(即窗口进入气隙)时,霍尔元
23、件产生电压。传感器输出低电平信号(0.1V)。发动机曲轴每转两圈(720),霍尔式传感器信号转子就转过一圈(360),对应产生一个低电平信号和一个高电平信号,其中低电平信号对应于气缸1压缩上止点前一定角度。发动机工作时,磁感应式曲轴位置传感器和霍尔式凸轮轴位置传感器产生的信号电压不断输入电子控制单元(ECU)。当ECU同时接收到曲轴位置传感器大齿缺对应的低电平(15)信号和凸轮轴位置传感器窗口对应的低电平信号时,便可识别出此时为气缸1活塞处于压缩行程、气缸4活塞处于排气行程,并根据曲轴位置传感器小齿缺对应输出的信号控制点火提前角。电子控制单元识别出气缸1压缩上止点位置后,便可进行顺序喷油控制和
24、各缸点火时刻控制。 如果发动机产生了爆燃,电子控制单元还能根据爆燃传感器输入的信号判别出是哪一个缸产生了爆燃,从而减小点火提前角,以便消除爆燃。2.5 进气温度传感器(1)进气温度传感器的结构及原理进气温度传感器的安装位置有3种:在D型EFI系统中,它安装在空气滤清器之后的进气软管上;在L型EFI系统中,它安装在空气流量传感器上;有的进气温度传感器安装在进气压力传感器内。进气温度传感器的内部是一个具有负温度电阻系数(NTC)的半导体热敏电阻(如图2-7a所示),外部用环氧树脂密封,安装在进气管上或空气流量计内。图2-7 进气温度传感a) 结构 b) 电阻值与温度的关系电阻值与温度的高低成反比,
25、温度越低则电阻越大,温度越高则电阻越小(如图2-7b所示)。进气温度传感器的两根导线都和电控单元ECU相连,其中一根为地线,另一根的对地电压随热敏电阻阻值的变化而变化,是信号输出线。(2)进气温度传感的功用进气温度传感器用来检测发动机的进气温度,将进气温度转变为电压信号输入给ECU做为喷油修正的信号。在冷车时,进气温度传感器的信号与发动机水温传感器信号基本相同,在热车时,其信号电压大约是水温传感器的23倍。2.6 冷却液温度传感器(1)冷却液温度传感器的结构原理如图2-8所示,冷却液温度传感器的内部也是一个负温度电阻系数(NTC)的半导体热敏电阻,其结构原理与进气温度传感器基本相同。它一般安装
26、在气缸体水道或冷却水出口处。图2-8 冷却液温度传感器 图2-9 冷却液温度传感器电路图(2)冷却液温度传感器的功用冷却液温度传感器给ECU提供发动机冷却液温度信号,作为燃油喷射和点火正时控制修正信号。冷却液温度传感器内的热敏电阻随着冷却液温度变化时,ECU 通过 THW 端子测得的分压值随之变化,ECU根据分压值来判断冷却液温度。冷却液温度传感器与ECU的连接电路如上图2-9所示。2.7 氧传感器(1)氧传感器的组成氧传感器包括一根加热氧化锆元件的热棒,加热棒受(ECU)电脑控制,当空气进量小(排气温度低)电流流向加热棒加热传感器,使之能精确检测氧气浓度。在试管状态化锆元素的内外两侧,设置有
27、白金电极,为了保护白金电极,用陶瓷包覆电极外侧(如上图2-10所示),内侧输入氧浓度高于大气,外侧输入的氧浓度低于汽车排出气体浓度。图2-10 氧传感器应当指出采用三元催化器后,必须使用无铅汽油,否则三元催化器和氧传感器会很快失效。再注意,氧传感器在油门稳定,配制标准混合时较为重要的作用,而在频繁加浓或变稀混合时,(ECU)电脑将忽略氧传感器的信息,氧传感器就不能起作用。现有的氧传感器分为片式和管式两种。(2)氧传感器的作用电喷车为获得高排气净化率,降低排气中(CO)一氧化碳、(HC)碳氢化合物和(NOx)氮氧化合物成份,必须利用三元催化器。但为了能有效地使用三元催化器,必须精确地控制空燃比,
28、使它始终接近理论空燃比。催化器通常装在排气歧管与消声器之间。氧传感器具有一种特性,在理论空燃比(14.7:1)附近它输出的电压有突变。这种特性被用来检测排气中氧气的浓度并反馈给电脑,以控制空燃比。当实际空燃比变高,在排气中氧气的浓度增加而氧传感器把混合气稀的状态(低电动势:0V)通知ECU。当空燃比比理论空燃比低时,在排气中氧气的浓度降低,而氧传感器的状态(高电动势:1V)通知(ECU)电脑。ECU根据来自氧传感器的电动势差别判断空燃比的低或高,并相应地控制喷油持续的时间。但是,如氧传器有故障使输出的电动势不正常,(ECU)电脑就不能精确控制空燃比。所以氧传感器还能弥补由于机械及电喷系统其它件
29、磨损而引起空燃比的误差。可以说是电喷系统中唯一有“智能”的传感器。(3)氧传感器的工作原理氧传感器是利用陶瓷敏感元件测量各类加热炉或排气管道中的氧电势,由化学平衡原理计算出对应的氧浓度,达到监测和控制炉内燃烧空然比,保证产品质量及尾气排放达标的测量元件,广泛应用于各类煤燃烧、油燃烧、气燃烧等炉体的气氛控制。它是目前最佳的燃烧气分测量方式,具有结构简单、响应迅速、维护容易、使用方便、测量准确等优点。运用该传感器进行燃烧气氛测量和控制既能稳定和提高产品质量,又可缩短生产周期,节约能源。2.8 爆燃传感器(1)压电式爆燃传感器的作用爆燃传感器(Knock Sensor)又称“爆震传感器”( 爆震,即
30、是发动机抖动),用来检测汽车发动机缸体爆燃强度,一旦爆燃出现则通知控制单元(ECU)延迟点火并转入点火定时的闭环控制,以便调整点火时刻。爆燃传感器用于检测发动机是否爆燃,当发动机出现爆燃时,传感器便产生相应的电信号,并输送给电子控制器,使电子控制器通过点火推迟的方法消除发动机爆燃。爆燃传感器主要有压电式和磁致伸缩式两种类型。(2)压电式爆燃传感器结构及工作原理压电式爆燃传感器利用结晶或陶瓷多晶体的压电效应而作,也有利用掺杂硅的压电电阻效应的。压电效应是指某些晶体的薄片受到压力和机械振动之后产生电荷的现象。该传感器的外壳内装有压电元件、配重块及导线等(如图2-11所示)。其工作原理是:当发动机的
31、气缸体出现振动且振动传递到传感器外壳上时, 图2-11 压电式爆燃传感器的结构1-引线 2-配重块 3-压电元件外壳与配重块之间产生相对运动,并根据其值的大小判断爆燃强度。桑塔纳2000GLi 、2000GSi采用的压电式爆燃传感器的结构如图2-12所示。主要由套筒、雅典元件、惯性配重、塑料壳体和接线插座等组成。压电元件制成垫圈形状,在其两个侧面上制作有金属垫圈作为电极,并用导线引到接线插座上。惯性配重与压电元件及压电元件与传感器套筒之间安装有绝缘垫圈,传感器用螺栓安装固定在发动机缸体上,调整螺栓的拧紧力矩便可调整传感器的输出电压,惯性配重用来传递发动机振动产生的惯性力。传感器插座上有三根引线
32、,其中两根为信号线,一根为屏蔽线。端子1为信号线正极,端子2为信号线负极,端子3为屏蔽线。图2-12 桑塔纳压电式爆燃传感器的结构1-套筒底座 2-绝缘垫圈 3-压电元件 4-惯性配重5-塑料壳体 6-固定螺栓 7-接线插座 8-电极2.9 光电式车速传感器(1)光电式传感器的组成及工作原理光电式传感器是固态的光电半导体传感器,它由带孔的转盘两个光导体纤维,一个发光二极管,一个作为光传感器的光电三极管组成。一个以光电三极管为基础的放大器为发动机控制电脑或点火模块提供足够功率的信号,光电三极管和放大器产生数字输出信号(开关脉冲)。发光二极管透过转盘上的孔照到光电二极管上实现光的传递与接收。转盘上
33、间断的孔可以开闭照射到光电三极管上的光源,进而触发光电三极管和放大器,使之像开关一样地打开或关闭输出信号。从示波器上观察光电式车速传感器输出波形的方法与霍尔式车速传感器完全一样,只是光电传感器有一个弱点即它们对油或赃物在光通过转盘传递的干涉十分敏感,所以光电传感器的功能元件通常被密封得十分好,但损坏的分电器或密封垫在使用中会使油或赃物进入敏感区域,这会引起行驶性能问题并产生故障码。(2)光电式车速传感器的结构及工作原理图2-13为光电式车速传感器的结构,它用在数字式速度表上,由发光二极管、光敏晶体管以及安装在速度表驱动轴上的遮光板构成。它的工作原理如图2-14所示,当遮光板不能遮断光束时,发光
34、二极管的光射到光敏晶体管上,光敏晶体管的集电极中有电流通过,使该管导通,这时三极管VT也导通,因此在Vs端子上有5V电压输出。脉冲频率由车速决定,车速为60km/h时,仪表挠性驱动轴的转速为637r/min,仪表软轴每转一圈,传感器有20个脉冲输出。图2-13 光电式车速传感器1-遮光板 2-光敏晶体管图2-14 光电式车速传感器的工作原理1-遮光板 2-光敏晶体管3 发动机电控系统传感器检测方法3.1 节气门位置传感器(1)节气门位置传感器控制组件检测1) 供电电压的检测。测量节气门控制器电位计和节气门电位计的电源电压。拔下节气门控制组件插头,打开点火开关,测量节气门控制组件插头端子4和7间
35、电压应接近5V(用20V量程档)。2) 输出信号电压的检测。插好节气门控制组件的导线连接器,将点火开关置于ON位置,测量5号端子和7号端子间电压。节气门从全闭到全开,信号电压在0.54.9V间变化。(节气门位置传感器连接插头如图2-3所示)3) 线束导通性的检测。如果上述测量值不正确,应检查节气门控制组件插头端子至发动机控制单元ECU相应端子之间的电阻值,检测标准如表3-1所示。表3-1 桑塔纳2000GSi AJR发动机节气门控制组件检测标准检测项目检测部位标准值/ECU端子传感器端子节气门控制器(V60)66115921怠速开关(F60)6930.5节气门电位计(G69)6240.5755
36、0.5怠速开关(F60)6770.5节气门控制器电位计(G88)7480.5怠速开关闭合67与691怠速开关打开3.2 进气温度传感器(1)进气温度传感器电阻检测进气温度传感器的电阻检测方法及要求与冷却液温度传感器基本相同。单件检查时,将点火开关置于OFF位置,拆下进气温度传感器导线连接器,并将传感器拆下。用电热吹风、或热水加热进气温度传感器,并用万用表电阻档,测量在不同温度下两端子间的电阻值。将测得的电阻值与标准数值进行比较,如果与标准值不符,则应更换进气温度传感器。桑塔纳2000GLi AFE、2000GSi AJR发动机进气温度传感器的电阻标准值见表3-2。表3-2 桑塔纳2000GLi
37、 AFE、2000GSi AJR发动机进气温度传感器的电阻标准值温度/电阻/-201400020000050006500202200270040100014006053065080280350100170200(2)进气温度传感器电压检测图3-1 丰田皇冠3.0 2JZ-GE型发动机进气温度传感器与ECU的连接电路1)检测电源电压。拆下进气温度传感器线束插头,打开点火开关,测量进气温度传感器的电源电压,应为5V。2)测量输入信号电压。将点火开关置于ON位置,用万用表的电压挡测量图3-1中ECU的THA与E2间的电压,该电压值应在0.53.4V(20)范围内。若不在规定范围内,则应进一步检查进气
38、温度传感器连接线路是否接触不良或存在断路、短路故障。3)进气温度传感器连接线束电阻。用数字式万用表的电阻挡测量传感器插头与ECU插接器端子间电阻,即传感器信号端、地线端分别与对应的ECU的两端子电阻。如果不导通或电阻值大于1,说明传感器连接线路或插头接触不良,应进一步检查。3.3 冷却液温度传感器(1)冷却液温度传感器的电阻检测1)就车检查点火开关置于“OFF”位置,拆卸冷却液温度传感器导线连接器,用数字式高阻抗万用表档,按图2-9所示测试传感器两端子(丰田皇冠3.0 为 THW 和 E2)间的电阻值。其电阻值与温度的高低成反比,在热机时应小于1k。2)单件检查拔下冷却液温度传感器导线连接器,
39、然后从发动机上拆下传感器;将该传感器置于烧杯内的水中,加热杯中的水,同时用万用表档测量在不同水温条件下冷却液温度传感器两接线端子间的电阻值。将测得的值与标准值相比较,如果不符合标准,则应更换冷却液温度传感器。丰田皇冠3.0 2JZ-GE发动机冷却液温度电阻检测标准值见表3-3。表3-3 丰田皇冠3.0 2JZ-GE发动机冷却液温度电阻检测标准值温度/-20020406080100电阻/ k16.262.21.10.60.30.2(2)冷却液温度传感器输出信号电压的检查安装好冷却液温度传感器,将传感器的连接器插好。当点火开关置于ON位置时,测量图2-9中连接器“THW”端子(丰田车)或ECU连接
40、器“THW”端子与E2间输出电压。所测得的电压应与冷却液温度成反比变化。拆下冷却液温度传感器线束插头,打开点火开关,测量冷却温度传感器的电源电压应为5V。4 各类传感器的总结相同点:产生信号后都输入ECU,供ECU对发动机工作状况进行精确控制,以提高发动机的动力性、降低油耗。不同点:见表4-1各类传感器的总结。表4-1 各类传感器的总结传感器名称传感器类型工作时是否需要加电工作中如何产生信号几根引脚空气流量传感器热线式空气流量传感器需要加电单臂电桥5进气(歧管绝对)压力传感器压敏电阻式进气歧管压力传感器需要加电压力能转化为电能4节气门位置传感器电阻式节气门位置传感器需要加电7曲轴位置传感器磁感
41、应式曲轴位置传感器不需要加电机械能转化为电能3凸轮轴位置传感器霍尔式凸轮轴位置传感器需要加电机械能转化为电能3进气温度传感器进气温度传感器需要加电单臂电桥2冷却液温度传感器冷却液温度传感器需要加电2氧传感器氧化锆式氧传感器不需要加电化学能转化为电能4爆燃传感器压电式爆燃传感器不需要加电振动能转化为电能3车速传感器光电式车速传感器不需要加电光能转化为电能25 传感器故障案例分析5.1 故障案例一 桑塔纳2000GSi轿车发动机怠速不稳故障现象:桑塔纳2000GSi轿车(装配1.8L AJR发动机)发动机怠速不稳,最高车速只能提高到140h,试车发现急加速时发动机排气管冒黑烟,且有回火现象。故障诊
42、断与排除:拆检火花塞发现火花塞电极发黑,测量高压线电阻正常为56k。更换所有火花塞试车故障依旧,据此判断故障为发动机混合气过浓所致。读取系统故障码,没有故障码记忆。采用数据流检测功能进入05读取动态数据流,查看09显示组,发现氧传感器信号电压几乎一直停留于0.70.9V之间。踩加速踏板,则氧传感器信号电压能够随之变化,从而说明氧传感器本身及其电路正常。查看发动机冷却液温度传感器和节气门开度的数据也正常。再进入05显示组检查发现发动机怠速运转时空气流量传感器的数据为67gs(正常值为24gs)。进入01显示组,发现其第二位显示值(发动机怠速负荷)大于2.5ms,刚好证明了发动机电控单元接收到偏大
43、的进气质量信号后加浓了混合气。打开点火开关,并用电吹风对空气流量传感器吹风,此时测量5号和3号端子之间的电压,发现信号电压并不随气流量的大小而有规律地变化,此时基本可以判定空气流量传感器已经损坏,电压信号失准。更换一只完好的空气流量传感器,然后试车,故障排除。总结:空气流量传感器与发动机转速信号确定基本喷油量,空气流量传器的损坏使发动机ECU接收到比实际空气流量大的空气流量信号,发动机ECU就指令喷油器增加喷油量,造成混合气过浓,从而引发了上述故障。本案例中,氧传感器信号不良是由于混合气过浓引起的,氧传感器自身并没有问题,如果不注意分析,容易认定氧传感器故障,从而使诊断误入歧途。5.2 故障案
44、例二 现代索纳塔汽车转速忽高忽低故障现象:一辆现代索纳塔汽车装用4缸电子燃油喷射发动机,出现了怠速不稳、转速忽高忽低,而且在低速行驶时,偶尔出现窜动的现象。故障出现时,仪表板上的CHECK警告灯发亮。故障诊断与排除:因仪表板上的CHECK警告灯发亮,说明电控系统有故障,调取故障码,显示为“14”,其含义是节气门位置传感器信号不正常。拆下节气门位置传感器上的线束插头,观察各端子,发现无锈蚀,接触也可靠。于是参照维修手册用万用表测量节气门位置传感器的电阻值。当用手操纵节气门由全关平稳的向全开过渡时,发现其电阻值不是呈线性变化,而是在全关(稍有震动)和开度不大时,电阻值有突变的情况。这说明节气门传感
45、器内的滑变电阻有接触不良的现象。更换新的节气门位置传感器,消除故障码,故障排除。总结:该车型发动机的节气门位置传感器由怠速向高速平稳过渡时,向电脑输入的电阻值应从0.5k平稳上升至3.56.5k。上述故障,正是由于节气门位置传感器在怠速 (稍有震动)或低速时,输出的电阻值出现突变,导致给电脑输入了错误信号(相当于节气门开度突然开大或减小)而出现了发动机工作失常的现象。5.3 故障案例三 奥迪100 2.6E轿车冷车不易起动故障现象:奥迪100 2.6E冷车不易起动,暖机阶段怠速不稳。故障诊断与排除:使用故障解码仪进行检测,发动机电控系统无故障码,用V.A.G1551阅读冷却液温度,高于仪表盘水
46、温表温度。拆下冷却液温度传感器,测量不同温度下的电阻,均超出规定范围,更换此传感器,故障排除。总结:发动机控制单元只能监测冷却液温度传感器的负极对地短路、正极断路或对蓄电池正极短路,如果水温传感器热敏电阻参数变化则无法监测,由于冷却液温度信号有误差,造成空燃比不正确。结 论本文以发动机电控系统传感器为探讨对象,分别介绍了它的组成构造和工作原理,也对发动机电控系统传感器故障诊断与检测介绍了些方法。最后对其部分常见的故障进行了举例分析,找出其故障存在的原因和位置。通过对传感器结构和工作原理的分析,总结出他们各自是怎么产生信号的,在工作中是否需要加电。在对电控发动机传感器故障进行检查与排除时,需要熟练地掌握传感器的结构、工作原理及电子控制系统控制原理,参阅所需要的技术资料,充分并合理地利用各种检测工具和手段。经过对这十种传感器的探讨,使我对发动机电控系统传感器有了更深的了解。我从中抽取了四种传感器,对其进行了更详细的分析和探讨,写出题目为发动机几种重要传感器的研究的学术论文,该论文发表在“科海故事博览科教创新”杂志第378期上。致 谢本文是在赵凯老师的精心指导下完成的。在此,我非常感谢我