《功能陶瓷材料钛酸盐亚微米晶的合成与表征毕业.doc》由会员分享,可在线阅读,更多相关《功能陶瓷材料钛酸盐亚微米晶的合成与表征毕业.doc(73页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流功能陶瓷材料钛酸盐亚微米晶的合成与表征毕业.精品文档. 分类号 学号 M05044 U D C 密级 学 位 论 文 功能陶瓷材料钛酸盐亚微米晶的合成与表征学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。作者签名: 日期: 年 月 日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的
2、规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权 大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。涉密论文按学校规定处理。作者签名:日期: 年 月 日导师签名: 日期: 年 月 日目录中文摘要1英文摘要31前言5 1.1 功能陶瓷材料的概述51.2 功能陶瓷的功能、分类及发展5 1.3 功能陶瓷微细粉末的制备技术81.3.1 功能陶瓷材料的制备要求91.3.2 功能陶瓷材料的制备方法111.3.2.1 固相法111.3.2.2 熔盐法131.3.2.3 液固法161.3.2.4其
3、它的合成方法16 1.4 本文的研究背景及选题依据19 1.5 本文的主要研究内容与创新点20 1.6 课题基金来源21参考文献222 BaTiO3亚微米晶的液-固合成及表征25 2.1 前言25 2.2 实验部分26 2.2.1实验所需试剂及设备26 2.2.2前驱体过氧化钡BaO2H2O2的制备26 2.2.3液固反应法合成BaTiO3亚微米晶26 2.2.4产品的表征26 2.3 结果与讨论27 2.3.1前驱体BaO2H2O2的表征27 2.3.2前驱体BaO2H2O2的DSC分析28 2.3.3 产品BaTiO3的XRD分析29 2.3.4产品BaTiO3的拉曼光谱表征30 2.3.
4、5产品BaTiO3的FTIR表征31 2.3.6 产品BaTiO3的XPS分析31 2.3.7 产品BaTiO3的SEM观察322.4 合成机理探讨332.5 产品BaTiO3性质的表征33 2.5.1产品BaTiO3的电阻和电容分析33 2.5.2产品BaTiO3的V-I表征362.6 小结37参考文献383 以CdO2为前驱体低温固相合成CdTiO3亚微米晶403.1 前言403.2 实验部分403.2.1实验所需试剂及设备403.2.2前驱体过氧化镉CdO2的制备413.2.3固相反应法合成CdTiO3亚微米晶41 3.2.4产品的表征413.3 结果与讨论42 3.3.1前驱体CdO2
5、的表征42 3.3.2前驱体CdO2的TG分析43 3.3.3 产品CdTiO3的XRD表征44 3.3.4产品CdTiO3的拉曼光谱表征45 3.3.5 产品CdTiO3的TG-DSC分析45 3.3.6产品CdTiO3的FTIR表征46 3.3.7产品CdTiO3的XPS表征47 3.3.8产品CdTiO3的SEM表征493.4合成机理探讨503.5产品CdTiO3的电学性能表征50 3.5.1产品CdTiO3的电阻和电容分析50 3.5.2产品CdTiO3的V-I表征523.6小结53参考文献554 SrTiO3亚微米晶的固相法、熔盐法合成564.1 前言564.2 实验部分57 4.2
6、.1实验所需试剂及设备57 4.2.2前驱体过氧化锶SrO2的制备58 4.2.3固相反应法合成SrTiO3亚微米晶58 4.2.4熔盐反应法合成SrTiO3亚微米晶58 4.2.5产品的表征584.3 结果与讨论59 4.3.1前驱体SrO2的表征59 4.3.2前驱体SrO2的热重分析60 4.3.3熔盐(MS)的TG-DSC分析61 4.3.4 产品SrTiO3的XRD表征62 4.3.4.1未加熔盐反应得到产品SrTiO3的XRD分析62 4.3.4.2熔盐法反应得到产品SrTiO3的XRD分析63 4.3.5 产品SrTiO3的SEM分析64 4.3.6 产品SrTiO3的拉曼分析6
7、6 4.3.7 产品SrTiO3的XPS分析66 4.3.8产品SrTiO3的FTIR分析68 4.4合成机理探讨69 4.5产品SrTiO3的电学性能表征70 4.5.1产品SrTiO3的阻抗性能表征70 4.5.2产品SrTiO3的V-I性能表征72 4.6小结73参考文献74总结与展望76致谢78硕士期间发表论文情况79扬州大学学位论文原创性声明和版权使用授权书80功能陶瓷材料钛酸盐亚微米晶的合成与表征中文摘要本论文利用低温固相法、液固法和熔盐法,设计新的反应体系和工艺过程,寻求温和、简单的方法合成一些重要的钛酸盐功能陶瓷材料,目的在于降低生产成本、减小污染和能耗,并实现对产品的纯度和尺
8、寸进行控制。利用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、傅立叶变换红外光谱(FTIR)、拉曼光谱(Raman)、热重-示差扫描量热法(TG-DSC)、电化学工作站等多种现代分析测试手段对所得产物的结构、组成、形貌、大小和性质等进行了表征,并初步探讨了相关的合成机理。已完成的主要内容总结如下: 1、通过一条新颖的低温液-固相反应法合成了四方相BaTiO3亚微米晶,这主要分两步来完成:第一,在碱性溶液(氨水调节pH = 8)中,以BaCl2和H2O2为原料,合成了前驱体BaO2H2O2亚微米颗粒(尺寸约为130-450 nm);第二,以自制的前驱体BaO2H
9、2O2(过量)和市售的TiO2亚微米颗粒为原料,在空气中700热处理10小时,再用1mol/L硝酸和蒸馏水洗去产物中可能含有的杂质,干燥后得到了四方相的BaTiO3亚微米晶(颗粒尺寸为180-400 nm)。利用XRD、XPS、FTIR、Raman、SEM等多种现代分析测试手段对产品的结构、组成、形貌以及大小进行了表征,并提出了该体系中产品BaTiO3的可能形成机理。最后,利用电化学工作站对产物的电学方面的性质进行研究。2、采用低温固相反应法合成了钛铁矿相CdTiO3亚微米晶。该法主要通过两个简单的步骤来完成:第一,在碱性溶液(氨水调节pH = 8)中,以3CdSO48H2O和H2O2为原料,
10、合成了前驱体CdO2纳米颗粒(尺寸约为5 nm);第二,以自制的前驱体CdO2纳米颗粒(过量)和市售的TiO2亚微米颗粒为原料,在空气中600热处理6小时,再用1mol/L硝酸和蒸馏水洗去产物中含有的杂质CdO,干燥后得到了钛铁矿相的CdTiO3亚微米晶(颗粒尺寸为150-350 nm)。利用XRD、SEM、FTIR、XPS、Raman等多种现代分析测试手段对产品的结构、形貌、大小以及组成进行了表征,并提出了该体系中产品CdTiO3的可能形成机理。最后,利用TG-DSC和电化学工作站对产物的热学和电学方面的性质进行研究。 3、分别通过低温固相反应法和熔盐法合成了高纯度的立方相SrTiO3亚微米
11、晶。主要通过两个简单的步骤来完成:第一,在碱性溶液(氨水调节pH = 8)中,以Sr(NO3)2和H2O2为原料,合成了前驱体SrO2纳米颗粒;第二,以自制的前驱体SrO2纳米颗粒和市售的TiO2亚微米颗粒为原料(熔盐法主要是在这一步中加入适量的熔盐混合物作为助熔剂),在空气中700热处理10小时,再用1mol/L硝酸和蒸馏水洗去产物中含有的杂质,干燥后得到了立方相的SrTiO3亚微米晶(颗粒尺寸为100-350 nm)。利用XRD、SEM、FTIR、XPS、Raman等多种现代分析测试手段对产品的结构、形貌、大小以及组成进行了表征,并提出了两体系中产品SrTiO3的可能形成机理。最后,并利用
12、电化学工作站对产物的电学方面的性质进行研究。关键词:陶瓷材料 固相法 液固法 熔盐法 表征Synthesis and Characterization of Submicron-sized Titanate Functional Ceramic MaterialsAbstractThe present thesis is focused on exploring mild and simple methods to synthesize some important titanate functional ceramic materilas via designing novel system
13、s and processes. It is aimed at reducing the costs, minishing pollutions and energy waste, as well as controlling the purity and size of the products. Furthermore, many modern analysis techniques including powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scan electron microsco
14、pe (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (Raman), electrochemical workstation, etc., were used to characterize the as-synthesized products, and the possible formation mechanisms of the titanate products were also proposed. The main works completed are summed up as
15、 following:1. Submicron-sized BaTiO3 crystallites in tetragonal structure were synthesized by a novel low-temperature liquid-solid reaction method, which mainly involved two simple steps: firstly, BaO2H2O2 submicron particles of about 130450 nm were precipitated from the reaction of BaCl2 and H2O2 i
16、n an alkalescent (pH = 8) aqueous solution under the ambient condition; secondly, tetragonal phase BaTiO3 submicrocrystals with the size in the range of 180 to 400 nm could be produced by subjecting the as-prepared BaO2H2O2 and commercial TiO2 submicron particles to thermal treatment in air at 700 C
17、 for 10 h, combined with a subsequent washing process using 1 mol/L HNO3 aqueous solution and distilled water. The structure, composition and electrical properties of the obtained products were characterized by XRD, Raman, FTIR, XPS, ICP-AES, SEM, and electrochemical workstation, etc. The possible f
18、ormation mechanism of BaTiO3 in this system was also proposed.2. High purity CdTiO3 submicrocrystals were synthesized by a low temperature solid phase reaction method, which mainly involved two simple steps: firstly, CdO2 nanoparticles with the size of about 5 nm were precipitated from the reaction
19、of 3CdSO48H2O and H2O2 in an alkalescent aqueous solution (pH = 8.0) under the ambient condition; secondly, ilmenite phase CdTiO3 crystallites with the size in the range of 150 to 350 nm could be produced by subjecting the as-prepared CdO2 nanoparticles and commercial TiO2 submicron powders to therm
20、al treatment in air at 600 C for 6 h, combined with a subsequent washing process using 1 mol/L HNO3 aqueous solution and distilled water. The structure, composition and electrical properties of the obtained products were characterized by XRD, Raman, FTIR, XPS, ICP-AES, SEM, and electrochemical works
21、tation, etc. The possible formation mechanism of CdTiO3 in this system was also proposed.3. The low temperature solid phase and molten salt synthesis of high purity SrTiO3 submicrocrystals has been achieved mainly via two simple steps: firstly, SrO2 nanoparticles with the size of about 53 nm were pr
22、ecipitated from the reaction of Sr(NO3)2 and H2O2 in an alkalescent aqueous solution (pH = 8.0) under the ambient condition; secondly, cubic phase SrTiO3 powders with the size in the range of 100 to 350 nm could be produced by subjecting the as-prepared SrO2 nanoparticles and commercial TiO2 powders (as for molten salt synthesis, in this procedure, appropriate amounts of KCl and NaCl mixture were added to the source materials) to thermal treatment in air at 700 oC for 10 h