《光电传感器实验方案的设计与实践——光电二极管特.doc》由会员分享,可在线阅读,更多相关《光电传感器实验方案的设计与实践——光电二极管特.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流光电传感器实验方案的设计与实践光电二极管特.精品文档.中北大学课 程 设 计 说 明 书学生姓名: 张路路 学 号: 0805014115 学 院: 信息与通信工程学院 专 业: 电子信息科学与技术 题 目: 光电传感器实验方案的设计与实践 光电二极管特性 指导教师: 程耀瑜 职称: 教授 指导教师: 李永红 职称: 讲师 2012年1月4日中北大学课程设计任务书 11/12 学年 第 一 学期学 院: 信息与通信工程学院 专 业: 电子信息科学与技术 学 生 姓 名: 张路路 学 号: 0805014115 课程设计题目: 光电传感器实验方
2、案的设计与实践 光电二极管特性 起 迄 日 期: 2011年12月19日2012年1月6日 课程设计地点: 主楼1318室,513教研室 指 导 教 师: 程耀瑜 李永红 系 主 任: 程耀瑜 下达任务书日期: 2011年12月19日课 程 设 计 任 务 书1设计目的:针对电子信息科学与技术专业的综合要求,在前序验证性认知实验基础上,进行更高层次的命题设计实验,综合设计实验对于提高学生的电子工程素质和科学实验能力非常重要,是电子技术人才培养成长的必由之路。目的是学生将课程中所学的理论与实践紧密结合,培养独立地解决实际问题的能力。学生必须独立完成一个选题的设计任务。2设计内容和要求(包括原始数
3、据、技术参数、条件、设计要求等):设计要求:1、学习光电二极管的基本工作原理; 2、掌握光电二极管的基本特性参数及其测量方法,并完成对其光照灵敏度、伏安特性、时间响应特性和光谱响应特性的测量;3、通过学习,能够对其他光伏器件有所了解。3设计工作任务及工作量的要求包括课程设计计算说明书(论文)、图纸、实物样品等:设计说明书符合要求;相应器件的工作原理;系统工作原理图(测量电路和特性曲线);参考文献原文不少于3篇。课 程 设 计 任 务 书4主要参考文献:1杨小丽,光电子技术基础,北京:北京邮电大学出版社,2005。2Donald A.Neamen.半导体物理与器件,北京:电子工业出版社,2005
4、。3杨经国,等.光电子技术,成都:四川大学出版社,1990。4梁万国,等.光电探测器的设计J,半导体光电,1998,(19):51-55。5王正清,等.光电探测技术M,北京:电子工业出版社,1994,161。5设计成果形式及要求:设计说明书及相关电路图6工作计划及进度:2011年 12月19日 2011年12 月 23日:查资料 12 月24 日 12月 31日:在指导教师指导下设计方案2012年1月 1 日 1 月5 日:学生完成实验,指导教师辅导完成课程设计说明书1月 6 日 : 答辩系主任审查意见: 签字: 年 月 日目录:实验目的1实验内容1实验仪器1实验原理1注意事项4实验步骤5实验
5、结果12实验总结15参考文献15光电二极管特性测试实验一、实验目的1、学习光电二极管的基本工作原理; 2、掌握光电二极管的基本特性参数及其测量方法,并完成对其光照灵敏度、伏安特性、时间响应特性和光谱响应特性的测量;3、通过学习,能够对其他光伏器件有所了解。二、实验内容1、光电二极管暗电流测试实验2、光电二极管伏安特性测试实验3、光电二极管光照特性测试实验4、光电二极管时间特性测试实验5、光电二极管光谱特性测试实验三、实验仪器1、光电二极管综合实验仪 1个2、光通路组件 1套3、光照度计 1个4、电源线 1根5、2#迭插头对(红色,50cm) 10根6、2#迭插头对(黑色,50cm) 10根7、
6、三相电源线 1根8、实验指导书 1本四、实验原理1、概述 随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有IIIV族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。例如,
7、锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。因此,在使用光敏二极管进要了解其类型及性能是非常重要的。光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,但输出电流普遍比光电池小,一般为数微安到数十微安。按材料分,光敏二极管有硅
8、、砷化铅光敏二极管等许多种,由于硅材料的暗电流温度系数较小,工艺较成熟,因此在实验际中使用最为广泛。光敏二极管的工作原理是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程。2、光电二极管的工作原理光生伏特效应:光生伏特效应是一种内光电效应。光生伏特效应是光照使不均匀半导体或均匀半导体中光生电子和空穴在空间分开而产生电位差的现象。对于不均匀半导体,由于同质的半导体不同的掺杂形成的PN结、不同质的半导体组成的异质结或金属与半导体接触形成的肖特基势垒都存在内建电场,当光照射这种半导体时,由于半导体对光的吸收而产生了光生电子和空穴,它们在内建电场的作用下就会向相
9、反的方向移动和聚集而产生电位差。这种现象是最重要的一类光生伏特效应。均匀半导体体内没有内建电场,当光照射时,因眼光生载流子浓度梯度不同而引起载流子的扩散运动,且电子和空穴的迁移率不相等,使两种载流子扩散速度的不同从而导致两种电荷分开,而出现光生电势。这种现象称为丹倍效应。此外,如果存在外加磁场,也可使得扩散中的两种载流子向相反方向偏转,从而产生光生电势。通常把丹倍效应和光磁电效应成为体积光生伏特效应。光电二极管和光电三极管即为光电伏特器件。光敏二极管的结构和普通二极管相似,只是它的PN结装在管壳顶部,光线通过透镜制成的窗口,可以集中照射在PN结上,图1(a)是其结构示意图。光敏二极管在电路中通
10、常处于反向偏置状态,如图1(b)所示。 我们知道,PN结加反向电压时,反向电流的大小取决于P区和N区中少数载流子的浓度,无光照时P区中少数载流子(电子)和N区中的少数载流子(空穴)都很少,因此反向电流很小。但是当光照PN结时,只要光子能量h大于材料的禁带宽度,就会在PN结及其附近产生光生电子空穴对,从而使P区和N区少数载流子浓度大大增加,它们在外加反向电压和PN结内电场作用下定向运动,分别在两个方向上渡越PN结,使反向电流明显增大。如果入射光的照度变化,光生电子空穴对的浓度将相应变动,通过外电路的光电流强度也会随之变动,光敏二极管就把光信号转换成了电信号。3、光电二极管的基本特性(1)暗电流光
11、电二极管在一定偏压,当没有光照的情况下,即黑暗环境中,所测得的电流值即为光电二极管的暗电流。(2)光电流光电二极管在一定偏压,当有光电照的情况下,所测得的电流值即为光电二极管在某特定光照下的光电流。(3)光照特性光电二极管在一定偏压下,当入射光的强度发生变化,通过光电二极管的电流随之变化,即为光电二极管的光照特性。反向偏压工作状态下,在外加电压E和负载电阻RL的很大变化范围内,光电流与入照光功率均具有很好的线性关系;在无偏压工作状态下,只有RL较小时光电流与入照光功率成正比,RL增大时光电流与光功率呈非线性关系。图2 光电二极管的光照特性(4)伏安特性在一定光照条件下,光电二极管的输出光电流与
12、偏压的关系称为伏安特性。光电二极管的伏安特性的数学表达式如下:I=I01exp (qV/kT)IL其中I0是无光照的反向饱和电流,V是二极管的端电压(正向电压为正,反向电压为负),q为电子电荷,k为波耳兹常数,T为PN结的温度,单位为K,IL为无偏压状态下光照时的短路电流,它与光照时的光功率成正比。(光电二极管的伏安特性如下图所示) 图3 光电二极管的伏安特性曲线(5)时间响应特性光敏晶体管受调制光照射时,相对灵敏度与调制频率的关系称为频率特性。减少负载电阻能提高响应频率,但输出降低。实验证明,光电器件的信号的产生和消失不能随着光强改变而立刻变化,会有一定的惰性,这种惰性通常用时间常数表示。即
13、当入射辐射到光电探测器后或入射辐射遮断后,光电探测器的输出升到稳定值或下降到照射前的值所需时间称为响应时间。为衡量其长短,常用时间常数的大小来表示。当用一个辐射脉冲光电探测器,如果这个脉冲的上升和下降时间很短,如方波,则光电探测器的输出由于器件的惰性而有延迟,把从10%上升到90%峰值处所需的时间称为探测器的上升时间,而把从90%下降到10%所需的时间称为下降时间。(6)光谱特性一般光电二极管的光谱响应特性表示在入射光能量保持一定的条件下,光电二极管在一定偏压下所产生光电流与入射光波长之间的关系。一般用相对响应表示,实验中光电二极管的响应范围为4001100nm,峰值波长为800900nm,由
14、于实验仪器所提供的波长范围为400650nm,因此,实验所测出的光谱响应曲线呈上升趋势。五、注意事项1、当电压表和电流表显示为“1”是说明超过量程,应更换为合适量程;2、连线之前保证电源关闭。3、实验过程中,请勿同时拨开两种或两种以上的光源开关,这样会造成实验所测试的数据不准确。4、光电二极管偏压不要接反。六、实验步骤下面的实验内容为光电二极管的实验内容,实验之前请拆卸结构件,将光电二极管结构件装入对应光器件插座中。1、光电二极管暗电流测试实验装置原理框图如图4所示,但是在实际操作过程中,光电二极管的暗电流非常小,只有nA数量级。这样,实验操作过程中,对电流表的要求较高,本实验中,采用电路中串
15、联大电阻的方法,将图4中的RL改为1M,再利用欧姆定律计算出支路中的电流即为所测器件的暗电流,如图4所示。图4(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。(2)“光源驱动单元”的三掷开关BM2拨到“静态特性”,将拨位开关S1,S2,S3,S4,S5,S6,S7均拨下。(3)“光照度调节”调到最小,连接好光照度计,直流电源调至最小,打开照度计,此时照度计的读数应为0。(4)将电压表直接与电源两端相连(5)按图4所示的电路连接电路图,负载RL选择RL=1M。(6)打开电源开关,调节
16、电源电压,并将电流表与电压表读数记入下表。(注:在测试暗电流时,应先将光电器件置于黑暗环境中30分钟以上,否则测试过程中电压表需一段时间后才可稳定)(7)实验完毕,直流电源调至最小,关闭电源,拆除所有连线。电源电压(V)暗电流(mA)2、光电二极管光电流测试实验装置原理图如图5所示。图5(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。(2)“光源驱动单元”的三掷开关BM2拨到“静态特性”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。(3)按图5连接电路图, RL取
17、RL4=1K欧。(4)打开电源,缓慢调节光照度调节电位器,直到光照为300lx(约为环境光照),缓慢调节直流调节电位器到电压表显示为6V,请出此时电流表的读数,即为光电二极管在偏压6V,光照300lx时的光电流。(5)实验完毕,将光照度调至最小,直流电源调至最小,关闭电源,拆除所有连线。3、光电二极管光照特性实验装置原理框图如图5所示。(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。(2)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6
18、,S7均拨下。(3)按图5所示的电路连接电路图,负载RL选择RL4=1K欧。(4)将“光照度调节”旋钮逆时针调节至最小值位置。打开电源,调节直流电源电位器,直到显示值为8V左右,顺时针调节光照度调节电位器,增大光照度值,分别记下不同照度下对应的光生电流值,填入下表。若电流表或照度计显示为“1”时说明超出量程,应改为合适的量程再测试。光照度(Lx)0100300500700800光生电流(A)(5)将“光照度调节”旋钮逆时针调节到最小值位置后关闭电源。图6光照度(Lx)0100300500700800光生电流(A)(6)将以上连接的电路中改为如下图6连接(即0偏压),RL取RL4=1K欧。(7)
19、打开电源,顺时针调节该光照度调节旋钮,增大光照度值,分别记下不同照度下对应的光生电流值,填入下表。若电流表或照度计显示为“1”时说明超出量程,应改为合适的量程再测试。(8)根据上面两表中实验数据,在同一坐标轴中作出两条曲线,并进行比较。(9)实验完毕,将光照度调至最小,直流电源调至最小,关闭电源,拆除所有连线。4、光电二极管伏安特性实验装置原理框图如图4所示。图5(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。(2)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,
20、S2,S3,S4,S5,S6,S7均拨下。(4)按图5所示的电路连接电路图,负载RL选择RL5=2K欧。(5)打开电源顺时针调节照度调节旋钮,使照度值为500Lx,保持光照度不变,调节电源电压电位器,使反向偏压为0V、2V,4V、6V、8V、10V、12V时的电流表读数,填入下表,关闭电源。 (注意:直流电源不可调至高于20V,以免烧坏光电二极管)偏压(V)0-2-4-6-8-10-12光生电流(A)(6)根据上述实验结果,作出500Lx照度下的光电二极管伏安特性曲线。(7)重复上述步骤。分别测量光电二极管在300Lx和800Lx照度下,不同偏压下的光生电流值,在同一坐标轴作出伏安特性曲线。并
21、进行比较(8)实验完毕,将光照度调至最小,直流电源调至最小,关闭电源,拆除所有连线。5.光电二极管时间响应特性测试(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。(2)“光源驱动单元”的三掷开关BM2拨到“脉冲”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。(3)按图7所示的电路连接电路图,负载RL选择RL=1K欧。(4)示波器的测试点应为A点,为了测试方便,可把示波器的测试点使用迭插头对引至信号测试区的TP1和TP2,TP1与直流电源的地相连。图7(5)打开电源
22、,白光对应的发光二极管亮,其余的发光二极管不亮。用示波器的第一通道与接TP和GND(即为输入的脉冲光信号),用示波器的第二通道接TP2。(6)观察示波器两个通道信号,缓慢调节直流电源电位器直到示波器上观察到信号清晰为止,并作出实验记录(描绘出两个通道波形)。(7)缓慢调节脉冲宽度调节,增大输入脉冲的脉冲信号的宽度,观察示波器两个通道信号的变化,并作出实验记录(描绘出两个通道的波形)并进行分析。(8)实验完毕,关闭电源,拆除导线。6、光电二极管光谱特性测试当不同波长的入射光照到光电二极管上,光电二极管就有不同的灵敏度。本实验仪采用高亮度LED(白、红、橙、黄、绿、蓝、紫)作为光源,产生40063
23、0nm离散光谱。光谱响应度是光电探测器对单色入射辐射的响应能力。定义为在波长的单位入射功率的照射下,光电探测器输出的信号电压或电流信号。即为或式中,为波长为时的入射光功率;为光电探测器在入射光功率作用下的输出信号电压;则为输出用电流表示的输出信号电流。本实验所采用的方法是基准探测器法,在相同光功率的辐射下,则有式中,为基准探测器显示的电压值,K为基准电压的放大倍数,为基准探测器的响应度。取在测试过程中,取相同值,则实验所测测试的响应度大小由的大小确定.下图为基准探测器的光谱响应曲线。 图8 基准探测器的光谱响应曲线(1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连
24、(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。(2)“光源驱动单元”的三掷开关BM2拨到“静态特性”,将拨位开关S1,S2,S4,S3,S5,S6,S7均拨下。(3)将直流电源正负极直接与电压表相连,打开电源,调节电源电位器至电压表为10V,关闭电源。(4)按如图9连接电路图,RL取RL10=100K欧。图9(5)打开电源,缓慢调节光照度调节电位器到最大,依次将S2,S3,S4,S5,S6,S7拨上后拨下,记下当上述开关拨向上时,照度计读数最小时照度计的读数E作为参考。(注意:请不要同时将两个拨位开关拨上)(6)S2拨上,缓慢调节电位器直到照度计显示为E,将
25、电压表测试所得的数据填入下表,再将S2拨下;(7)重复操作步骤(6),分别测试出橙,黄,绿,蓝,紫在光照度E下电压表的读数,填入下表。波长(nm)红(630) 橙(605)黄(585)绿(520)蓝(460)紫(400)基准响应度0.650.610.560.420.250.06光电流(U/R)(8)根据所测试得到的数据,做出光电二极管的光谱特性曲线。 七实验结果1光电二极管暗电流特性电源电压(V)6.47.58.29.413.616.619.722.5暗电流(mA)0.0070.0080.0090.0100.0140.0170.0200.0232光电二极管光照特性(1)图5条件下光照度(Lx)
26、0100300500700800光生电流(A)0493145.7257295314(2)图6条件下光照度(Lx)0100300500700800光生电流(A)0104060901003、光电二极管伏安特性(1).500LX偏压(V)0-2-4-6-8-10-12光生电流(A)00.931.902.232.352.452.53(2).300LX偏压(V)0-2-4-6-8-10-12光生电流(A)00.951.281.361.421.471.534、光电二极管时间响应特性(a)入射光脉冲方波(b)响应时间5、光电二极管光谱特性测试波长(nm)630605585520460400基准响应度0.65
27、0.610.560.420.250.06光电流(U/R)(uA)0.610.560.520.380.200.09八实验总结通过此次实验,我们了解到了光电二极管结构,特性,和工作原理,认识到了光电器件在不同环境下的性质变化以及他们的基本运用,掌握了不少光电探测器件使用的知识。在此感谢老师的指导和教诲,我们一定会继续努力学好光电探测,多动脑筋多思考,多动手多实践,认真学习理论知识,以应对社会的发展,满足企业的需要,争取做出成绩来,回馈母校,回报社会!九.参考文献1杨小丽,光电子技术基础,北京:北京邮电大学出版社,2005。2Donald A.Neamen.半导体物理与器件,北京:电子工业出版社,2005。3杨经国,等.光电子技术,成都:四川大学出版社,1990。4梁万国,等.光电探测器的设计J,半导体光电,1998,(19):51-55。5王正清,等.光电探测技术M,北京:电子工业出版社,1994,161。