高中数学不等式知识点总结2.docx

上传人:Che****ry 文档编号:17172363 上传时间:2022-05-21 格式:DOCX 页数:7 大小:295.46KB
返回 下载 相关 举报
高中数学不等式知识点总结2.docx_第1页
第1页 / 共7页
高中数学不等式知识点总结2.docx_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《高中数学不等式知识点总结2.docx》由会员分享,可在线阅读,更多相关《高中数学不等式知识点总结2.docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精品名师归纳总结选修 4-5学问点1、不等式的基本性质(对称性) abba可编辑资料 - - - 欢迎下载精品名师归纳总结(传递性)ab,bcac可编辑资料 - - - 欢迎下载精品名师归纳总结(可加性) abacbcab, cdacbdab, cdacbd(同向可加性)(异向可减性)可编辑资料 - - - 欢迎下载精品名师归纳总结(可积性) ab, c0acbc可编辑资料 - - - 欢迎下载精品名师归纳总结ab, c0acbc可编辑资料 - - - 欢迎下载精品名师归纳总结(同向正数可乘性)ab0, cd0acbd可编辑资料 - - - 欢迎下载精品名师归纳总结(异向正数可除性)ab0,0

2、cdabcd可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结(平方法就)ab0anbn nN, 且n1可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结(开方法就)ab0n an b nN ,且n1可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结ab0(倒数法就)11 ; ab011abab可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结2、几个重要不等式a 2b2可编辑资料 - - - 欢迎下载精品名师归

3、纳总结22 ab2ab a,bR,(当且仅当ab.ab 时取 号) .变形公式:2可编辑资料 - - - 欢迎下载精品名师归纳总结(基本不等式)ababa, bR,(当且仅当 ab 时取到等号) .可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结变形公式:ab ab2a b22ab.2可编辑资料 - - - 欢迎下载精品名师归纳总结用基本不等式求最值时(积定和最小,和定积最大),要留意满意三个条件“一正、二定、三相等” .可编辑资料 - - - 欢迎下载精品名师归纳总结(三个正数的算术几何平均不等式)abc 33 abc a、b、cR (当且仅当

4、可编辑资料 - - - 欢迎下载精品名师归纳总结abc 时取到等号) .可编辑资料 - - - 欢迎下载精品名师归纳总结a2b2c2abbcca a, bR可编辑资料 - - - 欢迎下载精品名师归纳总结(当且仅当 abc 时取到等号) .可编辑资料 - - - 欢迎下载精品名师归纳总结ab33c33abca0,b0,c0可编辑资料 - - - 欢迎下载精品名师归纳总结(当且仅当 abc 时取到等号) .可编辑资料 - - - 欢迎下载精品名师归纳总结如ab0, 就 baab2(当仅当 a=b 时取等号)可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归

5、纳总结如ab0,就 baab2(当仅当 a=b 时取等号)可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结bbman 1 aambnab ,(其中 ab0, m0, n0可编辑资料 - - - 欢迎下载精品名师归纳总结规律:小于 1 同加就变大,大于1 同加就变小 .可编辑资料 - - - 欢迎下载精品名师归纳总结 当a0时,xax2a2xa或xa;可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结xax2a2axa.可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品

6、名师归纳总结肯定值三角不等式ababab .可编辑资料 - - - 欢迎下载精品名师归纳总结3、几个闻名不等式可编辑资料 - - - 欢迎下载精品名师归纳总结平均不等式: 号) .2a 1b 1ababab2222,(a,bR,当且仅当 ab 时取 可编辑资料 - - - 欢迎下载精品名师归纳总结(即调和平均几何平均算术平均平方平均) .变形公式:可编辑资料 - - - 欢迎下载精品名师归纳总结2ababa2b2; a2b2ab2.可编辑资料 - - - 欢迎下载精品名师归纳总结222幂平均不等式:可编辑资料 - - - 欢迎下载精品名师归纳总结222a a.a1 aa2可编辑资料 - - -

7、 欢迎下载精品名师归纳总结12n12.nan .可编辑资料 - - - 欢迎下载精品名师归纳总结二维形式的三角不等式:可编辑资料 - - - 欢迎下载精品名师归纳总结x 2y 2x 2y 2 xx 2 yy 2x , y , x, yR.可编辑资料 - - - 欢迎下载精品名师归纳总结11221212当且仅当时,等号成立 .二维形式的柯西不等式:1122可编辑资料 - - - 欢迎下载精品名师归纳总结 a2b2 c2d 2acbd 2 a,b, c,dR.adbc可编辑资料 - - - 欢迎下载精品名师归纳总结三维形式的柯西不等式:可编辑资料 - - - 欢迎下载精品名师归纳总结a 2a 2a

8、 2 b 2b 2b 2a ba ba b 2 .可编辑资料 - - - 欢迎下载精品名师归纳总结1231231 12 23 3一般形式的柯西不等式:a 2a 2.a 2 b 2b 2.b 2a ba b.a b 2 .12n12n1 12 2n n向量形式的柯西不等式:设 ,是两个向量, 就, 当且仅当是零向量, 或存在实数 k ,使k时, 等号成立 .排序不等式(排序原理):可编辑资料 - - - 欢迎下载精品名师归纳总结设 a1a2.an ,b1b2.bn 为两组实数 . c1,c2,., cn 是b1,b2,., bn 的任一排列,就可编辑资料 - - - 欢迎下载精品名师归纳总结可编

9、辑资料 - - - 欢迎下载精品名师归纳总结a1bna2 bn 1.anb1a1c1a2 c2.an cna1b1a2b2.anbn(. 反序和乱序和可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结次序和),当且仅当 a1a2.an 或 b1b2.bn 时,反序和等于次序和.可编辑资料 - - - 欢迎下载精品名师归纳总结琴生不等式 :(特例 :凸函数、凹函数)可编辑资料 - - - 欢迎下载精品名师归纳总结如定义在某区间上的函数f x ,对于定义域中任意两点x1 , x2 x1x2 , 有可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资

10、料 - - - 欢迎下载精品名师归纳总结f x1x2 2f x1 2f x2 或f x1x2 2f x1 f x2 .2就称 fx 为凸(或凹)函数.可编辑资料 - - - 欢迎下载精品名师归纳总结4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法。其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法: a1 23a1 2 ;可编辑资料 - - - 欢迎下载精品名师归纳总结舍去或加上一些项,如242可编辑资料 - - - 欢迎下载精品名师归纳总结将分子或分母放大(缩小) ,可编辑资料 - - - 欢迎下载精品名师归纳总结11如

11、k 2k k111 , k 2kk,122212,kkkkkk1可编辑资料 - - - 欢迎下载精品名师归纳总结12kN* , k1kkk1等.5、一元二次不等式的解法可编辑资料 - - - 欢迎下载精品名师归纳总结2求一元二次不等式ax2bxc0或 0可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结a0,b 4ac0 解集的步骤:可编辑资料 - - - 欢迎下载精品名师归纳总结一化:化二次项前的系数为正数.二判:判定对应方程的根.三求:求对应方程的根.可编辑资料 - - - 欢迎下载精品名师归纳总结四画:画出对应函数的图象.五解集:依据图象写出

12、不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向, 写出不等式的解集 .7、分式不等式的解法:先移项通分标准化,就可编辑资料 - - - 欢迎下载精品名师归纳总结f x0g xf xg x0可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结f x0f x gx0可编辑资料 - - - 欢迎下载精品名师归纳总结g xg x0(“ 或 ”时同理)可编辑资料 - - - 欢迎下载精品名师归纳总结规律:把分式不等式等价转化为整式不等式

13、求解.8、无理不等式的解法:转化为有理不等式求解f x0可编辑资料 - - - 欢迎下载精品名师归纳总结f xaa0f xa2可编辑资料 - - - 欢迎下载精品名师归纳总结f x0可编辑资料 - - - 欢迎下载精品名师归纳总结f xa a0f xa2可编辑资料 - - - 欢迎下载精品名师归纳总结f x0f xg xg xf x0或 gx 2f x0f xg xg xf x0 g x 2f x0f xg xg x0f xg xf x0g x0规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 9、指数不等式的解法:可编辑资料 - - - 欢迎下载精品名师归纳总结当 a

14、f x1a时,ag xf xgx可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结当 0a1时,a f xag x f xgx可编辑资料 - - - 欢迎下载精品名师归纳总结规律:依据指数函数的性质转化.10、对数不等式的解法可编辑资料 - - - 欢迎下载精品名师归纳总结f x0可编辑资料 - - - 欢迎下载精品名师归纳总结log af xlog ag xg x0可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结当 a1时,f xg x可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 -

15、- - 欢迎下载精品名师归纳总结log af xlog ag xf x0g x0.可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结当 0a1时,f xg x可编辑资料 - - - 欢迎下载精品名师归纳总结规律:依据对数函数的性质转化.11、含肯定值不等式的解法:可编辑资料 - - - 欢迎下载精品名师归纳总结a定义法:aa0.a a0可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结平方法:f xgxf 2 xg 2 x.可编辑资料 - - - 欢迎下载精品名师归纳总结同解变形法,其同解定理有:可编辑

16、资料 - - - 欢迎下载精品名师归纳总结 xaaxaa0;可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结 xaxa或xaa0;可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结 f xg xgxf xg x gx0可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结 f xg xf xg x 或f xg xg x0可编辑资料 - - - 欢迎下载精品名师归纳总结规律:关键是去掉肯定值的符号.12、含有两个(或两个以上)肯定值的不等式的解法:规律:找零点、

17、划区间、分段争论去肯定值、每段中取交集,最终取各段的并集.13、含参数的不等式的解法可编辑资料 - - - 欢迎下载精品名师归纳总结解形如ax2bxc0 且含参数的不等式时,要对参数进行分类争论,分类争论的标准有:可编辑资料 - - - 欢迎下载精品名师归纳总结争论 a 与 0 的大小。争论与 0 的大小。争论两根的大小 .14、恒成立问题可编辑资料 - - - 欢迎下载精品名师归纳总结不等式ax2bxc0 的解集是全体实数(或恒成立)的条件是:可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结当 a0 时b0, c0;可编辑资料 - - - 欢迎

18、下载精品名师归纳总结a0当 a0 时0.可编辑资料 - - - 欢迎下载精品名师归纳总结不等式ax2bxc0 的解集是全体实数(或恒成立)的条件是:可编辑资料 - - - 欢迎下载精品名师归纳总结当 a0 时b0, c0;可编辑资料 - - - 欢迎下载精品名师归纳总结a0当 a0 时0.可编辑资料 - - - 欢迎下载精品名师归纳总结 f xa 恒成立f xmaxa;可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结f xa 恒成立f xmaxa;可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结 f

19、 xa 恒成立f xmina;可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结f xa 恒成立f xmina.可编辑资料 - - - 欢迎下载精品名师归纳总结15、线性规划问题常见的目标函数的类型:可编辑资料 - - - 欢迎下载精品名师归纳总结“截距”型:zAxBy;可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结z“斜率”型:y zyb ;x 或xa可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结“距离”型:z x22zx2y或y2 ;可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结z xa2 yb2zxa2 yb2 .可编辑资料 - - - 欢迎下载精品名师归纳总结或在求该 “三型” 的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简洁化可编辑资料 - - - 欢迎下载

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁