《菱形基础知识点及同步练习、含答案.docx》由会员分享,可在线阅读,更多相关《菱形基础知识点及同步练习、含答案.docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -学科:数学菱形【基础学问精讲】定义:有一组邻边相等的平行四边形是菱形定理 1:四边都相等的四边形是菱形定理 2:对角线相互垂直的平行四边形是菱形【重点难点解析】1菱形的性质(1) 菱形具有平行四边形的一切性质。(2) 菱形的四条边都相等。(3) 菱形的对角线相互垂直,并且每一条对角线平分一组对角。(4) 菱形是轴对称图形2菱形的面积=底高 =对角线乘积的一半A重点、难点提示1懂得并把握菱形的概念,性质和判别方法。(这是重点,也是难点,要把握好)2经受探究菱形的性质和判别条件的过程,在操作活动和观看、分析过
2、程中进展同学的主动探究习惯和初步的审美意识,进一步明白和体会说理的基本方法。3明白菱形的现实应用和常用的判别条件。4体会特别与一般的关系 B考点指要菱形是特别的平行四边形,其性质和判别方法是中考的重要内容之一一组邻边相等的平行四边形叫做菱形菱形是特别的平行四边形,具有平行四边形的一切性质除具有平行四边形的一切性质外,菱形仍具有以下性质:菱形的四条边都相等。两条对角线相互垂直平分。(显现了垂直,常与勾股定理联系在一起)每一条对角线都平分一组内角(显现了相等的角,常与角平分线联系在一起)菱形是轴对称图形,它的两条对角线所在直线是它的两条对称轴(不是对角线,而是其所在直线,由于对称轴是直线,而对角线
3、是线段)菱形的判别方法: (学会利用轴对称的方法讨论菱形)一组邻边相等的平行四边形是菱形。对角线相互垂直的平行四边形是菱形。四条边都相等的四边形是菱形【难题巧解点拨】例 1:如图 4-24,在 ABC 中, BAC=90 , AD BC 于 D ,CE 平分 ACB ,交 AD可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 1 页,共 9 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -于 G,交 AB 于 E, EF
4、 BC 于 F求证:四边形AEFG 是菱形思路分析由已知可知,图中有平行线,就可证角相等、线段相等,因此,可先证四边形AEFG是平行四边形,再证一组邻边相等证明: BAC=90 , EFBC ,CE 平分 ACB , AE=EF , CEA= CEF(这是略证,并不是完整的证明过程) AD BC, EF BC, EF AD ,(垂直于同一条直线的两条直线相互平行) CEF= AGE ,(两直线平行,内错角相等) CEA= AGE , AE=AG , EF AG ,且 EF=AG ,四边形 AEFG 是平行四边形 (一组对边平行且相等的四边形是平行四边形) 又 AE=EF ,平行四边形AEFG
5、是菱形例 2: 已知菱形的周长为20cm,一条对角线长为5cm,求菱形各个角的度数已知:菱形ABCD 中, AB+BC+CD+DA=20cm,对角线 AC=5cm 求 ADC 、 ABC 、BCD 、 DAB的度数思路分析利用菱形的四条边相等,可求出各边长,从而得到等边三角形,如图4-25解: 在菱形 ABCD 中, AB=BC=CD=DA,又 AB+BC+CD+DA=20cm, AB=BC=CD=DA=5cm,又 AC=5cm ,可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 2 页,共 9 页 - - - - - - - - -
6、 -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - - AB=BC=AC , CD=DA=AC , ABC 和 DAC 都是等边三角形,(此题将边之间的长度关系转化为角的关系) ADC= ABC=60 , BCD= DAB=120 例 3:如图 4-26,在平行四边形ABCD 中, BAE= FAE , FBA= FBE求证:四边形 ABEF 是菱形证法一: AF BE, FAE= AEB(两直线平行,内错角相等)又 BAE= FAE, BAE= AEB , AB=BE (等角对等边) 同理, AB=AF , BE=EF
7、, AB=BE=EF=AF,四边形 ABEF 是菱形(四条边都相等的四边形是菱形) 证法二: AF BE, FAE= AEB , 又 BAE= FAE, BAE= AEB , AB=BE 又 FBA= FBE , AO=OE , AE FB ,(等腰三角形三线合一)同理, BO=OF ,四边形 ABEF 是菱形(对角线相互垂直平分的四边形是菱形)(你仍有其他的证明方法吗?不妨试一下)例 4: 菱形的两邻角之比为1: 2,边长为2,就菱形的面积为 思路分析此题主要考查菱形的性质和面积公式的应用:解法一:如图4-27, B: A=1 : 2,可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料
8、 名师精选 - - - - - - - - - -第 3 页,共 9 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -四边形 ABCD是菱形, AD BC, A+ B=180 , B=60 , A=120 , 过 A 作 AE BC 于 E, BAE=30 ,可编辑资料 - - - 欢迎下载精品名师归纳总结BE1 AB21,(直角三角形中,30角所对的直角边等于斜边的一半)可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结AEAB 2
9、BE 222123 ,(勾股定理)可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结S菱形 ABCDBCAE23 (平行四边形的面积运算方法是:底乘以高)可编辑资料 - - - 欢迎下载精品名师归纳总结解法二:如图4-28, B A=1 2,四边形 ABCD是菱形, AD BC, A+ B=180 , B=60 , A=120 , 连结 AC 、BD 交于点 O,可编辑资料 - - - 欢迎下载精品名师归纳总结ABD1B302, AC BD 可编辑资料 - - - 欢迎下载精品名师归纳总结(菱形的性质:对角线平分一组对角,对角线相互垂直)可编辑资料
10、 - - - 欢迎下载精品名师归纳总结在 RtABO 中, AO1 AB1,2可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结BOAB 2AO 222123 ,可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结 AC=2 , BDS菱形 ABCD23 ,1 ACBD21223223 可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结答:菱形的面积为23 可编辑资料 - - - 欢迎下载精品名师归纳总结【典型热点考题】例 1如图 4-13 ,已知菱形ABCD
11、中, E、F 分别是 BC、CD上的点,且 B= EAF=60,BAE=18,求 CEF的度数可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 4 页,共 9 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -点悟: 由 B=60知,连接AC得等边 ABC与 ACD,从而 ABE ADF,有 AE=AF,就 AEF为等边三角形,再由外角等于不相邻的两个内角和,可求CEF解: 连接 AC四边形 ABCD为菱形,B= D= 6
12、0 , AB=BC=CD=D,AABC与 CDA为等边三角形 AB=AC, B= ACD= BAC=60,EAF=60,BAE= CAF AE=AF 又 EAF=60,EAF为等边三角形AEF=60,AEC= B+ BAE=AEF+ CEF, 60 +18 =60 +CEF,CEF=18例 2已知如图4-14 ,在 ABC中, BAC=90, AD BC 于 D, CE 平分 ACB,交 AD于 G,交 AB于 E, EF BC于 F,求证:四边形AEFG为菱形点悟: 可先证四边形AEFG为平行四边形,再证邻边相等 或对角线垂直 证明: BAC=90, EF BC, CE平分 BCA, AE=
13、FE , AEC= FEC EF BC, AD BC, EF ADFEC= AGE, AEC= AGE AE=AG,可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 5 页,共 9 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -四边形 AEFG为平行四边形又AE=AG四边形 AEFG为菱形 点拨: 此题仍可以用判定菱形的另两种方法来证例 3已知如图4-15 ,E 为菱形 ABCD边 BC上一点, 且 AB=AE,AE
14、交 BD于 O,且 DAE=2BAE求证: EB=OA证明: 四边形 ABCD为菱形,ABC=2 ABD, AD BC,DAE= AEB, AB=AE , ABC= AEBDAE=2 ABDDAE=2 BAE,ABD= BAE, OA=OBBOE= ABD+ BAE,BOE=2 BAEBEA= BOE, OB=BE, AO=BE说明: 利用菱形性质证题时,要敏捷选用,选不同性质,就会有不同思路例 4已知菱形的一边与两条对角线构成的两角之比为5: 4,求菱形的各内角的度数点悟: 先作出菱形ABCD和对角线AC、BD如图 4-16 解:四边形 ABCD是菱形, AC BD,1+ 2=90,又 1:
15、 2=4: 5,1=40, 2=50,DCB= DAB=2 2=100,故CBA= CDA=2 1=80可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 6 页,共 9 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -【同步达纲练习一】一、挑选题1已知菱形的一条对角线与边长相等,就菱形的邻角度数分别为 A45 ,135 B60,120 C90 ,90 D30,150 2如菱形的一条对角线长是另一条对角线的2 倍,且此菱形
16、的面积为S,就它的边长为可编辑资料 - - - 欢迎下载精品名师归纳总结(A) SB1Sc213S2D15S2可编辑资料 - - - 欢迎下载精品名师归纳总结二、填空题3已知:菱形ABCD中, E、F 是 BC、 CD上的点,且AE=EF=AF=A,B 就 B= .4已知:菱形的两条对角线长分别为a、b,就此菱形周长为 ,面积为 .5菱形具有而矩形不具有的性质是 .可编辑资料 - - - 欢迎下载精品名师归纳总结6已知一个菱形的面积为83 平方厘米,且两条对角线的比为1:3 ,就菱形的边可编辑资料 - - - 欢迎下载精品名师归纳总结长为 .三、解答题7已知: O为对角线 BD的中点, MN过
17、 O且垂直 BD,分别交 CD、AB于 M、N求证:四边形DNBM是菱形8如图 4-17 ,已知菱形ABCD的对角线交于点O, AC=16cm, BD=12cm,求菱形的高【同步达纲练习二】1在菱形ABCD中,如 ADC=120 ,就 BD :AC 等于 可编辑资料 - - - 欢迎下载精品名师归纳总结A 3 : 2B3 : 3C 1: 2D3 : 1可编辑资料 - - - 欢迎下载精品名师归纳总结2已知菱形的周长为40cm,两对角线的长度之比为3:4,就两对角线的长分别为 A 6cm, 8cmB 3cm, 4cmC 12cm, 16cmD 24cm, 32cm 3菱形的对角线具有A 相互平分
18、且不垂直 B相互平分且相等可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 7 页,共 9 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -C相互平分且垂直D相互平分、垂直且相等(把握菱形对角线的性质,留意不要增加性质)可编辑资料 - - - 欢迎下载精品名师归纳总结4已知菱形的面积等于160cm2 ,高等于8cm,就菱形的周长等于 可编辑资料 - - - 欢迎下载精品名师归纳总结5已知菱形的两条对角线的长分别是6 和
19、8,那么它的边长是 6菱形的周长是40cm,两邻角的比是1: 2,就较短的对角线长是 cm 7如图4-29,在 ABC中, BAC=90 , BD 平分 ABC ,AG BC ,且 BD 、AG相交于点 E, DF BC 于 F求证:四边形AEFD 是菱形8如图 4-30,平行四边形ABCD的对角线AC 的垂直平分线与AD 、BC 、AC 分别交于点 E、F、 O求证:四边形AFCE 是菱形可编辑资料 - - - 欢迎下载精品名师归纳总结参考答案【同步达纲练习一】一、 1 B。2 D。二、 3 80。 4 2a212b, 2 ab 。可编辑资料 - - - 欢迎下载精品名师归纳总结5对角线相互
20、垂直,各边长相等6 4 厘米三、 7由已知MN为 BD的垂直平分线,有 DM=BM, DN=BN,又由 DOM BON,得 DM=B,N DM=BM=BN=DN四边形DNBM是菱形 .可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 8 页,共 9 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -8过点 D 作 DH AB 于 H,就 DH为菱形的一条高 又AC 、BD相互垂直平分于O,可编辑资料 - - - 欢迎下载精
21、品名师归纳总结OA1 AB28 厘米, OB1 BD26 厘米可编辑资料 - - - 欢迎下载精品名师归纳总结由勾股定理,得可编辑资料 - - - 欢迎下载精品名师归纳总结ABAO2BO 210 厘米 可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结又 1 ABDH21 BD2OA ,可编辑资料 - - - 欢迎下载精品名师归纳总结 110DH211228 , DH=9.6 厘米可编辑资料 - - - 欢迎下载精品名师归纳总结【同步达纲练习二】1 B。 2 C。 3C。 4 80cm。 5 5。6 10。7证法一:在Rt ABD 和 Rt FBD
22、 中, BD 为 ABC 的平分线,ABD= FBD , DAB= DFB=90 ,又 BD=BD , RtABD Rt FBD AD=DF , ADE= EDF又 DFBC ,AG BC , DF/AE , EDF= DEA , ADE= DEA , AD=AE , AE=DF ,四边形AEFD 是平行四边形 AD=DF ,四边形AEFD 为菱形证法二:同证法一得DF=DA=AE , RtABD Rt FBD , AB=BF , ABE FBE , AE=EF , DF=DA=AE=EF ,四边形AEFD 是菱形证法三:同证法一:Rt ABD Rt FBD , AB=BF , ABE FBE
23、 , GAB= EFB,又 C+ ABC=90 , GAB+ ABC=90 , C= GAB , C= EFB, EF AC , 又 DFAG ,四边形AEFD 是平行四边形, AD=DF ,四边形AEFD 是菱形8 AD BC , OAE= OCF ,又 AOE= COF=90 , AO=CO , AOE COF , AE=CF ,又 AE CF,四边形 AFCE 是平行四边形又 EF 是 AC 的垂直平分线,AE=CE (垂直平分线上的点到线段两端距离相等)四边形 AFCE 是菱形可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 9 页,共 9 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载