《三种常见重金属的处理方法的比较(共4页).doc》由会员分享,可在线阅读,更多相关《三种常见重金属的处理方法的比较(共4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上三种常见的处理方法的比较一、 石灰中和法1.1基本原理 石灰中和反应法是在含重金属离子废水中投加消石灰C a( O H ) : , 使它和水中的重金属离子反应生成离子溶度积很小的重金属氢氧化物。通过投药量控制水中P H 值在一定范围内, 使水中重金属氢氧化物的离子浓度积大于其离子溶度积而析出重金属氢氧化物沉淀, 达到去除重金属离子, 净化废水的目的。 将废水收集到废水均化调节池,通过耐腐蚀自吸泵将混合后的废水送至一次中和槽,并且在管路上投加硫酸亚铁溶液作为砷的共沉剂(添加量为Fe/As=10),同时投加石灰乳进行充分搅拌反应,搅拌反应时间为30 min,石灰乳投加量由
2、pH计自动控制,使一次中和槽出口溶液pH值为7.0;为了使二价铁氧化成三价铁,产生絮凝作用,在一次中和槽后设置氧化槽,进行曝气氧化,经氧化后的废水自流至二次中和槽,再投加石灰乳,石灰乳投加量由pH计自动控制,使二次中和槽出口溶pH值为911;在二次中和槽废水出口处投加3号凝聚剂(投加浓度为10 mg/L),处理废水自流至浓密机,进行絮凝、沉淀;上清液自流至澄清池,传统的石灰中和处理重金属废水流程如下:石灰一段中和及氢氧化钠二段中和时,各种重金属去除率随pH不同而沉淀效果不同,不同的金属的溶度积随PH不同而不同。同一PH所以对重金属的沉淀效果不一样,而废水中的重金属通常不只一种,根据重金属的含量
3、在进水时把配合调到某金属在较低ph溶度积最高时对应的PH。加石灰乳进行中和反应,沉淀废水中的大部分金属。上清液进入下一个调节池,进入调节PH ,进入二次中和反应池,除去剩余的重金属离子。1.2 石灰中和沉淀的优缺点 采用石灰石作为中和剂有很强的适应性,还具有废水处理工艺流程短、设备简单石灰就地可取,价格低廉,废水处理费用很低,渣含水量较低并易于脱水等优点,但是,石灰中和处理废水后,生成的重金属氢氧化物矾花,比重小,在强搅拌或输送时又易碎成小颗粒,所以它的沉降速度慢。往往会在沉降分离过程中随水流外溢,又使处理后的废水浊度升高,含重金属离子仍然超标。要求废水不含络合剂如C N 一、N H 。等,
4、否则水中的重金属离子就会和络合剂发生络合反应, 生成以重金属离子为中心离子以络合剂为配位体的复杂而又稳定的络离子, 使废水处理变得复杂和困难。已沉降的矾花中和渣泥的含水率极高(达99%以上),其过滤脱水性能又很差,加上组成复杂、含重金属品位又低,这给综合回收利用与处置带来了困难,甚至造成二次污染。此外,渣量大,不利于有价金属的回收,也易造成二次污染II。用石灰水处理的重金属废水。由于不同重金属与OH的结合在同一PH下不同,同一金属在不同PH下的溶度积不同。所以,用传统的石灰法处理重金属含量较多的复杂的废水,显然不行,首先某些重金属不能达标排放,其次,处理废水中含钙比较多。在冶炼厂,很难循环使用
5、。二、 硫化沉淀法2.1 基本原理 在含重金属离子废水中投加硫化的药剂,使其和水中的重金属离子反应生成离子溶度积非常小的硫化物,通过投药量来控制水中的重金属硫化物的离子溶度积大于其重金属离子的溶度积,对废水中金属离子进行沉淀或选择性沉淀,再加入高分子捕收剂,然后向废水中通入大量密集微细气泡,使其与沉淀物相互粘附,形成整体比重小于水的浮体,在浮力作用下沉淀物上浮至水面,使水中的硫化物沉淀,实现固液分离,达到去除重金属的效果,净化水的目的。常用的硫化剂有:Na2S、NaHS、H2S、CaS和FeS。其流程如下: 其硫化物沉淀的特点:在一定pH 范围内,硫化物沉淀法是否适用不仅与硫化物的溶度积有关,
6、而且与金属离子的价态和浓度有关。如果溶液的pH大于硫化物沉淀平衡pH, 金属硫化物沉淀将析出。pH 低时会生成硫化氢气体。控制溶液的pH 可以选择性地沉淀析出溶度积较小的金属硫化物。对于重金属与硫化物生成的溶度积非常小的金属硫化物,只需要加入少量的硫化物,就可以达到去除重金属的效果,废水中重金属残留量少,达到排放的标准,但是对于溶度积非常大的金属硫化物,在操作过程中,一定要控制硫化物的添加量,要使硫化物的溶度积大于水中的金属的溶度积,则必须要加入过量的金属硫化物,2.1 硫化物的优缺点 硫化物沉淀法处理废水时会产生硫化渣,硫化渣可以直接作为产品出售,收益可以抵消水处理成本,也可以选择性地回收有
7、价金属离子。在沉淀重金属离子时, 硫化物的用量是决定硫化物沉淀法的关键因素。Na2S 用量过小,硫化物沉淀不完全;Na2S 用量过大,不仅浪费药剂,而且处理后的出水含较多的S2-、HS-,更有甚者S2-有可能生成MS22- 、MS32-、MS42-等络物而使沉淀不完全,同时所得到的沉渣中金属的品位也会受到一定的影响。硫化物沉淀过程中遇酸会生成硫化氢气体,产生二次污染。避免或减少硫化氢的产生成为硫化物沉淀法处理的一大致命缺点。 用硫化物沉淀法沉淀重金属废水。并不使每种金属都达标排放,硫化物对金属锌的去除率很低。因此硫化物沉淀法只征对某些特殊的重金属废水。 此外硫化物处理重金属废水还有价格昂贵成本
8、高,硫化物本身具有一定的颜色,出水浊度不达标,硫化物对PH要求苛刻,通常出水PH呈碱性。三、 生物制剂法3.1 基本原理 生物制剂是从自然界中筛选的优势菌种或通过基因组合技术生产出的高效菌种,采用先进的生物技术和特殊的生产工艺制成的高效生物活性菌剂,生物制剂的组成可以概括为微生物、酶及一些保持微生物活性的物质。主要是以硫杆菌为主的复合功能菌群代谢产物与其它化合物进行组分设计,通过基团嫁接技术制备了含有大量羟基、巯基、羧基、氨基等功能基团组的生物制剂 首先利用生物制剂将废水中的重金属离子实现深度脱除,并加入脱钙剂与絮凝剂,然而经固液分离,将脱除重金属离子与钙离子后的清液经膜处理装置,将废水中的氯
9、离子脱除,从而使治理后的污水达到回用水的水质要求,实现污水的全面回用。具体的生物制剂法如下:3.2生物制剂的优点 重金属废水生物制剂法解决了目前化学药剂难以同时深度净化多金属离子的缺陷。生物制剂深度处理与回用技术可同时实现对镉、砷、铅、锌、汞、铜等重金属离子的高效去除,处理后各重金属离子浓度低于铅、锌工业污染物排放标准(GB254662010)。同时生物制剂兼有高效絮凝、协同脱钙作用,钙离子可控脱除到50mgL以下,处理后的低钙净化水可以实现大规模回用。 生物制剂的优点具体表现在:(1) 它能缩短微生物培养驯化的时间,迅速提高生物处理系统中微生物的浓度,从而提高工作效率;(2)生物制剂所含天然
10、微生物不含致病菌和病源体,这些微生物在酶的催化作用下,以污水中的有机营养物质为食物,当污水得到净化后,这些微生物会随着污染物的降低而逐渐减少,直至消亡,不会造成二次污染;(3)使用安全,操作简单方便,基本不需要添加设备或者工程,节省能源,节省资金投入。(4)抗重金属冲击负荷强,净化高效,运行稳定:对于浓度波动很大且无规律的废水,经新工艺处理后净化水中重金属低于或接近生活饮用水水源水质标准;(5)废水中钙离子可控脱除,效果明显,可控到20mg/L以下,净化水回用率95%以上;(6)净化水COD、SS达到一级排放标准(7)渣水分离效果好,出水清澈,水质稳定,水解渣量比中和法少,重金属含量高,利于资源化;(8)对于100-300mg/L重金属废水,生物制剂投加成本0.3-0.8元/m3;(9)处理设施均为常规设施,占地面积小,投资建设成本低,工艺成熟。对于现有石灰中和法处理系统只需增加生物制剂的贮备槽和药剂投加泵等系统,改造费用低。专心-专注-专业