2017高中数学排列与组合知识点归纳.doc

上传人:be****23 文档编号:17008524 上传时间:2022-05-20 格式:DOC 页数:4 大小:13.50KB
返回 下载 相关 举报
2017高中数学排列与组合知识点归纳.doc_第1页
第1页 / 共4页
2017高中数学排列与组合知识点归纳.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《2017高中数学排列与组合知识点归纳.doc》由会员分享,可在线阅读,更多相关《2017高中数学排列与组合知识点归纳.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2017高中数学排列与组合知识点归纳学习是一个边学新知识边巩固的过程,对学知识一定要多加计划,这样才能进步。因此,为大家整理了高中数学排列与组合知识点,供大家参考。2017高中数学排列与组合知识点归纳1.计数原理知识点乘法原理:N=n1n2n3nM (分步) 加法原理:N=n1+n2+n3+nM (分类)2.排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)-(n-m+1)=n!/(n-m)! Ann =n!Cnm = n!/(n-m)!m!Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k k!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排

2、列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题)间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:分类讨论思想;转化思想;对称思想.4.二项式定理知识点:(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3

3、an-3b3+ Cnran-rbr+-+ Cn n-1abn-1+ Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+Cnrxr+Cnnxn主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+Cnr+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+ Cn6+ Cn8+=Cn1+Cn3+Cn5+ Cn7+ Cn9+=2n -1通项为第r+1项: Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。

4、5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。【同步练习题】1.(2010 山东潍坊)6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( )A.40 B.50C.60 D.70答案 B解析 先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以乘车方法数为252=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐

5、法有( )A.36种 B.48种C.72种 D.96种答案 C解析 恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )A.6个 B.9个C.18个 D.36个答案 C解析 注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22C23=6(种)排法,所以共有36=18(种)情况,即这样的四位数有18个.4.男女学生共有8

6、人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A.2人或3人B.3人或4人C.3人D.4人答案 A解析 设男生有n人,则女生有(8-n)人,由题意可得C2nC18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A.45种 B.36种C.28种 D.25种答案 C解析 因为108的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.高中数学排列与组合知识点介绍到这里了,想必大家已经积累了不少文化知识,同时也一定不要忘了及时调整自己的【学习计划】,提前做好开学的准备!第 4 页 共 4 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁