《精品高二数学知识点最新整理5篇分享0.doc》由会员分享,可在线阅读,更多相关《精品高二数学知识点最新整理5篇分享0.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高二数学知识点最新整理5篇分享只有高效的学习方法,才可以很快的掌握知识的重难点。有效的读书方式根据规律掌握方法,不要一来就死记硬背,先找规律,再记忆,然后再学习,就能很快的掌握知识。下面就是小编给大家带来的高二数学知识点,希望大能帮助到大家! 高二数学知识点1 直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 1平面含义:平面是无限延展的 2平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图) (2)平面通常用希腊字母、等表示,如平面、平面等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大
2、写字母来表示,如平面AC、平面ABCD等。 3三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 AL BL= L A B 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A、B、C三点不共线= 有且只有一个平面, 使A、B、C。 公理2作用:确定一个平面的依据。 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P= =L,且PL 公理3作用:判定两个平面是否相交的依据 高二数学知识点2 圆的方程 1、圆的定义:平面内到一定点的距离等于定长的点
3、的集合叫圆,定点为圆心,定长为圆的半径。 2、圆的方程 (1)标准方程,圆心,半径为r; (2)一般方程 当时,方程表示圆,此时圆心为,半径为 当时,表示一个点;当时,方程不表示任何图形。 (3)求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a,b,r;若利用一般方程,需要求出D,E,F; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况: (1)设直线,圆,圆心到l的距离为,则有; (2)过圆外一点的切线:k不存在,验证是否成立k存在
4、,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程 (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。 设圆, 两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。 当时两圆外离,此时有公切线四条; 当时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当时两圆相交,连心线垂直平分公共弦,有两条外公切线; 当时,两圆内切,连心线经过切点,只有一条公切线; 当时,两
5、圆内含;当时,为同心圆。 注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 圆的辅助线一般为连圆心与切线或者连圆心与弦中点 高二数学知识点3 等差数列 对于一个数列an,如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为d;从第一项a1到第n项an的总和,记为Sn。 那么,通项公式为,其求法很重要,利用了“叠加原理”的思想: 将以上n-1个式子相加,便会接连消去很多相关的项,最终等式左边余下an,而右边则余下a1和n-1个d,如此便得到上述通项公式。 此外,数列前n项的和,其具体推导方式较简单,可用以上类似的叠加的方法,也可以采取迭代的方法,在
6、此,不再复述。 值得说明的是,前n项的和Sn除以n后,便得到一个以a1为首项,以d/2为公差的新数列,利用这一特点可以使很多涉及Sn的数列问题迎刃而解。 等比数列 对于一个数列an,如果任意相邻两项之商(即二者的比)为一个常数,那么该数列为等比数列,且称这一定值商为公比q;从第一项a1到第n项an的总和,记为Tn。 那么,通项公式为(即a1乘以q的(n-1)次方,其推导为“连乘原理”的思想: a2=a1_, a3=a2_, a4=a3_, an=an-1_, 将以上(n-1)项相乘,左右消去相应项后,左边余下an,右边余下a1和(n-1)个q的乘积,也即得到了所述通项公式。 此外,当q=1时该
7、数列的前n项和Tn=a1_ 当q1时该数列前n项的和Tn=a1_1-q(n)/(1-q). 高二数学知识点4 (1)定义: (2)函数存在反函数的条件: (3)互为反函数的定义域与值域的关系: (4)求反函数的步骤:将看成关于的方程,解出,若有两解,要注意解的选择;将互换,得;写出反函数的定义域(即的值域)。 (5)互为反函数的图象间的关系: (6)原函数与反函数具有相同的单调性; (7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。 七、常用的初等函数: (1)一元一次函数: (2)一元二次函数: 一般式 两点式 顶点式 二次函数求最值问题:首先要采用配方法,化为
8、一般式, 有三个类型题型: (1)顶点固定,区间也固定。如: (2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。 (3)顶点固定,区间变动,这时要讨论区间中的参数. 等价命题在区间上有两根在区间上有两根在区间或上有一根 注意:若在闭区间讨论方程有实数解的情况,可先利用在开区间上实根分布的情况,得出结果,在令和检查端点的情况。 (3)反比例函数: (4)指数函数: 指数函数:y=(a o,a1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a 1和0 (5)对数函数: 对数函数:y=(a o,a1)图象恒过点(1,0),单调性与a的
9、值有关,在解题中,往往要对a分a 1和0 高二数学知识点5 直线与圆: 1、直线的倾斜角的范围是 在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0; 2、斜率:已知直线的倾斜角为,且90,则斜率k=tan. 过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。 3、直线方程:点斜式:直线过点斜率为,则直线方程为, 斜截式:直线在轴上的截距为和斜率,则直线方程为 4、直线与直线的位置关系: (1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=0 5、点到直线的距离公式; 两条平行线与的距离是 6、圆的标准方程:.圆的一般方程: 注意能将标准方程化为一般方程 7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线. 8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.相离相切相交 9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长高二数学知识点最新整理5篇分享第 6 页 共 6 页