精品高二数学必背知识点总结大全.doc

上传人:be****23 文档编号:16989224 上传时间:2022-05-20 格式:DOC 页数:7 大小:16KB
返回 下载 相关 举报
精品高二数学必背知识点总结大全.doc_第1页
第1页 / 共7页
精品高二数学必背知识点总结大全.doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《精品高二数学必背知识点总结大全.doc》由会员分享,可在线阅读,更多相关《精品高二数学必背知识点总结大全.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高二数学必背知识点总结大全高二这一年,是成绩分化的分水岭,成绩会形成两极分化:行则扶摇直上,不行则每况愈下。下面就是小编给大家带来的高二数学知识点,希望大能帮助到大家! 高二数学知识点1 直线与方程 (1)直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0 180 (2)直线的斜率 定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。 过两点的直线的斜率公式: 注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜

2、角为90; (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程 点斜式:直线斜率k,且过点 注意:当直线的斜率为0时,k=0,直线的方程是y=y1。 当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。 斜截式:,直线斜率为k,直线在y轴上的截距为b 两点式:()直线两点, 截矩式: 其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。 一般式:(A,B不全为0) 注意:各式的适用范围特殊的方程如: 平行于

3、x轴的直线:(b为常数);平行于y轴的直线:(a为常数); (5)直线系方程:即具有某一共同性质的直线 (一)平行直线系 平行于已知直线(是不全为0的常数)的直线系:(C为常数) (二)垂直直线系 垂直于已知直线(是不全为0的常数)的直线系:(C为常数) (三)过定点的直线系 ()斜率为k的直线系:,直线过定点; ()过两条直线,的交点的直线系方程为 (为参数),其中直线不在直线系中。 (6)两直线平行与垂直 当,时,; 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。 (7)两条直线的交点 相交 交点坐标即方程组的一组解。 方程组无解;方程组有无数解与重合 (8)两点间距离公式:

4、设是平面直角坐标系中的两个点, 则 (9)点到直线距离公式:一点到直线的距离 (10)两平行直线距离公式 在任一直线上任取一点,再转化为点到直线的距离进行求解。 高二数学知识点2 1、导数的定义:在点处的导数记作. 2.导数的几何物理意义:曲线在点处切线的斜率 k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0)切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。 3.常见函数的导数公式: 4.导数的四则运算法则: 5.导数的应用: (1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数; 注意:如果已知为减函数求字母取值范围,那么不

5、等式恒成立。 (2)求极值的步骤: 求导数; 求方程的根; 列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值; (3)求可导函数值与最小值的步骤: 求的根;把根与区间端点函数值比较,的为值,最小的是最小值。 高二数学知识点3 函数的单调性、奇偶性、周期性 单调性:定义:注意定义是相对与某个具体的区间而言。 判定方法有:定义法(作差比较和作商比较) 导数法(适用于多项式函数) 复合函数法和图像法。 应用:比较大小,证明不等式,解不等式。 奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。f(x)-f(-x

6、)=0f(x)=f(-x)f(x)为偶函数; f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。 判别方法:定义法,图像法,复合函数法 应用:把函数值进行转化求解。 周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。 其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期. 应用:求函数值和某个区间上的函数解析式。 四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。 常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考

7、) 平移变换y=f(x)y=f(x+a),y=f(x)+b 注意:()有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。 ()会结合向量的平移,理解按照向量(m,n)平移的意义。 对称变换y=f(x)y=f(-x),关于y轴对称 y=f(x)y=-f(x),关于x轴对称 y=f(x)y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称 y=f(x)y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数) 伸缩变换:y=f(x)y=f(x), y=f(x)y=Af(x+)具体参照三角函数的图象变换。 一个重要结

8、论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称; 高二数学知识点4 直线与平面垂直的判定 1、定义 如果直线L与平面内的任意一条直线都垂直,我们就说直线L与平面互相垂直,记作L,直线L叫做平面的垂线,平面叫做直线L的垂面。直线与平面垂直时,它们公共点P叫做垂足。 2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 注意点:a)定理中的“两条相交直线”这一条件不可忽视; b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。 2.3.2平面与平面垂直的判定 1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形

9、2、二面角的记法:二面角-l-或-AB- 3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。 2.3.32.3.4直线与平面、平面与平面垂直的性质 1、定理:垂直于同一个平面的两条直线平行。 2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。 高二数学知识点5 求导数的方法 (1)基本求导公式 (2)导数的四则运算 (3)复合函数的导数 设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即 二、关于极限 .1.数列的极限: 粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。记作:=A。如: 2函数的

10、极限: 当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作 三、导数的概念 1、在处的导数. 2、在的导数. 3.函数在点处的导数的几何意义: 函数在点处的导数是曲线在处的切线的斜率, 即k=,相应的切线方程是 注:函数的导函数在时的函数值,就是在处的导数。 例、若=2,则=()A-1B-2C1D 四、导数的综合运用 (一)曲线的切线 函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步: (1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为_。高二数学必背知识点总结大全第 7 页 共 7 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁