《精品高二数学教案总结精选最新五篇.doc》由会员分享,可在线阅读,更多相关《精品高二数学教案总结精选最新五篇.doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高二数学教案总结精选最新五篇着眼于眼前,不要沉迷于玩乐,不要沉迷于学习进步没有别人大的痛苦中,进步是一个由量变到质变的过程,只有足够的量变才会有质变,沉迷于痛苦不会改变什么。下面就是小编给大家带来的高二数学教案总结,希望能帮助到大家!高二数学教案总结1教学准备教学目标一、知识与技能(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系.(6)使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.二、
2、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.三、情态与价值通过本节的学习,使同学们掌握另一种度量角的单位制-弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备.教学重难点重点:
3、理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.难点:理解弧度制定义,弧度制的运用.教学工具投影仪等教学过程一、创设情境,引入新课师:有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里)显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可以换算:1英里=1.6公里.在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制-弧度制.二、讲解新课1.
4、角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本,自行解决上述问题.2.弧度制的定义长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写).(师生共同活动)探究:如图,半径为的圆的圆心与原点重合,角的终边与轴的正半轴重合,交圆于点,终边与圆交于点.请完成表格.我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如-,-2等等,一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零
5、角的弧度数是0,角的正负主要由角的旋转方向来决定.角的概念推广以后,在弧度制下,角的集合与实数集R之间建立了一一对应关系:即每一个角都有的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有的一个角(即弧度数等于这个实数的角)与它对应.四、课堂小结度数与弧度数的换算也可借助“计算器”中学数学用表进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略如:3表示3radsinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。五、作业布置作业:习题1.1A组第7,8,9题.课后小结度数与弧度数的换算也
6、可借助“计算器”中学数学用表进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略如:3表示3radsinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。课后习题作业:习题1.1A组第7,8,9题.板书高二数学教案总结2(1)平面向量基本定理的内容是什么?(2)如何定义平面向量基底?(3)两向量夹角的定义是什么?如何定义向量的垂直?新知初探1.平面向量基本定理条件e1,e2是同一平面内的两个不共线向量结论这一平面内的任意向量a,有且只有一对实数1,2,使a=1e1+2e2基底不共线的向量e1,e2叫做表
7、示这一平面内所有向量的一组基底点睛对平面向量基本定理的理解应注意以下三点:e1,e2是同一平面内的两个不共线向量;该平面内任意向量a都可以用e1,e2线性表示,且这种表示是的;基底不,只要是同一平面内的两个不共线向量都可作为基底.2.向量的夹角条件两个非零向量a和b产生过程作向量=a,=b,则AOB叫做向量a与b的夹角范围0180特殊情况=0a与b同向=90a与b垂直,记作ab=180a与b反向点睛当a与b共线同向时,夹角为0,共线反向时,夹角为180,所以两个向量的夹角的范围是0180.高二数学教案总结3教学目标(1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区
8、域;(2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及解等基本概念;(3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;(5)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.教学建议一、知识结构教科书首先通过一个具体问题,介绍了二元一次不等式表示平面区域.再通过一个具体实例,介绍了线性规化问题及有关的几个基本概念及一种基本解法-图解法,并利用几道例题说明线性规化在实际中的应用.二、重点、难点分析本小节的重
9、点是二元一次不等式(组)表示平面的区域.对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生、抽象的概念,按高二学生现有的知识和认知水平难以透彻理解,因此学习二元一次不等式(组)表示平面的区域分为两个大的层次:(1)二元一次不等式表示平面区域.首先通过建立新旧知识的联系,自然地给出概念.明确二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域不包含边界直线(画成虚线).其次再扩大到所表示的平面区域是包含边界直线且要把边界直线画成实线.(2)二元一次不等式组表示平面区域.在理解二元一次不等式表示平面区域含义的基础上,画不等式组所表示的平面区域,找出各个不等式所表示的平面区域
10、的公共部分.这是学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题的基础.难点是把实际问题转化为线性规划问题,并给出解答.对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,即不会建模.所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出解作为突破这个难点的关键.对学生而言解决应用问题的障碍主要有三类:不能正确理解题意,弄清各元素之间的关系;不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;孤立地考虑单个的问题情景,
11、不能多方联想,形成正迁移.针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题.另外,利用计算机可以较快地帮助学生掌握寻找整点解的方法.三、教法建议(1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念(2)建议将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对
12、旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.(3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的.(4)建议通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,这对培养学生观察、联想、猜测、归纳等数学能力是大有益处的.(5)对作业、思考题、研究性题的建议:作业主要训练学生规范的解题步骤和作图能力;思考题主要供学有余力的学生课后完成;研究性题综合性较大,主要用于拓宽学生的思维.(6)若实际问题要求的解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,
13、其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.如果可行域中的整点数目很少,采用逐个试验法也可.(7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量,收到的效益;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.高二数学教案总结4预习课本P103105,思考并完成以下问题(1)怎样定义向量的数量积?向量的数量积与向量数乘相同吗?(2)向量b在a方向上的投影怎么计算?数量积的几何意义是什么?(3)向量数量积的性质有哪些?(4)向量数量
14、积的运算律有哪些?新知初探1.向量的数量积的定义(1)两个非零向量的数量积:已知条件向量a,b是非零向量,它们的夹角为定义a与b的数量积(或内积)是数量|a|b|cos记法ab=|a|b|cos(2)零向量与任一向量的数量积:规定:零向量与任一向量的数量积均为0.点睛(1)两向量的数量积,其结果是数量,而不是向量,它的值等于两向量的模与两向量夹角余弦值的乘积,其符号由夹角的余弦值来决定.(2)两个向量的数量积记作ab,千万不能写成ab的形式.2.向量的数量积的几何意义(1)投影的概念:向量b在a的方向上的投影为|b|cos.向量a在b的方向上的投影为|a|cos.(2)数量积的几何意义:数量积
15、ab等于a的长度|a|与b在a的方向上的投影|b|cos的乘积.点睛(1)b在a方向上的投影为|b|cos(是a与b的夹角),也可以写成ab|a|.(2)投影是一个数量,不是向量,其值可为正,可为负,也可为零.3.向量数量积的性质设a与b都是非零向量,为a与b的夹角.(1)ab?ab=0.(2)当a与b同向时,ab=|a|b|,当a与b反向时,ab=-|a|b|.(3)aa=|a|2或|a|=aa=a2.(4)cos=ab|a|b|.(5)|ab|a|b|.点睛对于性质(1),可以用来解决有关垂直的问题,即若要证明某两个向量垂直,只需判定它们的数量积为0;若两个非零向量的数量积为0,则它们互相
16、垂直.4.向量数量积的运算律(1)ab=ba(交换律).(2)(a)b=(ab)=a(b)(结合律).(3)(a+b)c=ac+bc(分配律).点睛(1)向量的数量积不满足消去律:若a,b,c均为非零向量,且ac=bc,但得不到a=b.(2)(ab)ca(bc),因为ab,bc是数量积,是实数,不是向量,所以(ab)c与向量c共线,a(bc)与向量a共线,因此,(ab)c=a(bc)在一般情况下不成立.高二数学教案总结5学习目标:1、了解本章的学习的内容以及学习思想方法2、能叙述随机变量的定义3、能说出随机变量与函数的关系,4、能够把一个随机试验结果用随机变量表示重点:能够把一个随机试验结果用
17、随机变量表示难点:随机事件概念的透彻理解及对随机变量引入目的的认识:环节一:随机变量的定义1.通过生活中的一些随机现象,能够概括出随机变量的定义2能叙述随机变量的定义3能说出随机变量与函数的区别与联系一、阅读课本33页问题提出和分析理解,回答下列问题?1、了解一个随机现象的规律具体指的是什么?2、分析理解中的两个随机现象的随机试验结果有什么不同?建立了什么样的对应关系?总结:3、随机变量(1)定义:这种对应称为一个随机变量。即随机变量是从随机试验每一个可能的结果所组成的到的映射。(2)表示:随机变量常用大写字母.等表示.(3)随机变量与函数的区别与联系函数随机变量自变量因变量因变量的范围相同点
18、都是映射都是映射环节二随机变量的应用1、能正确写出随机现象所有可能出现的结果2、能用随机变量的描述随机事件例1:已知在10件产品中有2件不合格品。现从这10件产品中任取3件,其中含有的次品数为随机变量的学案.这是一个随机现象。(1)写成该随机现象所有可能出现的结果;(2)试用随机变量来描述上述结果。变式:已知在10件产品中有2件不合格品。从这10件产品中任取3件,这是一个随机现象。若Y表示取出的3件产品中的合格品数,试用随机变量描述上述结果例2连续投掷一枚均匀的硬币两次,用X表示这两次正面朝上的次数,则X是一个随机变量,分别说明下列集合所代表的随机事件:(1)X=0(2)X=1(3)X 2(4)X 0变式:连续投掷一枚均匀的硬币三次,用X表示这三次正面朝上的次数,则X是一个随机变量,X的可能取值是?并说明这些值所表示的随机试验的结果.练习:写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机变量的结果。(1)从学校回家要经过5个红绿灯路口,可能遇到红灯的次数;(2)一个袋中装有5只同样大小的球,编号为1,2,3,4,5,现从中随机取出3只球,被取出的球的号码数;小结(对标)高二数学教案总结精选最新五篇第 10 页 共 10 页