《精品高一物理教案范文汇总物理教案范文.doc》由会员分享,可在线阅读,更多相关《精品高一物理教案范文汇总物理教案范文.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高一物理教案范文汇总_物理教案范文物理学是研究物质运动最一般规律和物质基本结构的学科。下面就是小编给大家带来的高一物理教案,希望能帮助到大家!高一物理教案1匀变速直线运动的速度与时间的关系一、 教材分析在上一节实验的基础上,分析v-t图像时一条倾斜直线的意义加速度不变,由此定义了匀变速直线运动。而后利用描述匀变速直线运动的v-t图像的是倾斜直线,进一步分析匀变速直线运动的速度与时间的关系:无论时间间隔?t大小, 的值都不变,由此导出v = v0 + at,最后通过例题以加深理解,并用“说一说”使学生进一步加深对物体做变速运动的理解。二、 教学目标1、知道匀速直线运动 图象。2、知道匀变速直线运
2、动的 图象,概念和特点。3、掌握匀变速直线运动的速度与时间关系的公式v = v0 + at,并会进行计算。教学重点1、 匀变速直线运动的 图象,概念和特点。2、 匀变速直线运动的速度与时间关系的公式v = v0 + at,并进行计算。三、 教学难点会用 图象推导出匀变速直线运动的速度与时间关系的公式v = v0 + at。四、 教学过程预习检查:加速度的概念,及表达式 a=导入新课:上节课,同学们通过实验研究了速度与时间的关系,小车运动的-t图象。设问:小车运动的 -t图象是怎样的图线?(让学生画一下)学生坐标轴画反的要更正,并强调调,纵坐标取速度,横坐标取时间。-t图象是一条直线,速度和时间
3、的这种关系称为线性关系。设问:在小车运动的-t图象上的一个点P(t1,v1)表示什么?学生画出小车运动的-t图象,并能表达出小车运动的-t图象是一条倾斜的直线。学生回答:t1时刻,小车的速度为v1 。学生回答不准确,教师补充、修正。预习检查情境导入精讲点拨:1、匀速直线运动图像向学生展示一个-t图象:提问:这个-t图象有什么特点?它表示物体运动的速度有什么特点?物体运动的加速度又有什么特点?在各小组陈述的基础上教师请一位同学总结。2、匀变速直线运动图像提问:在上节的实验中,小车在重物牵引下运动的v-t图象是一条倾斜的直线,物体的加速度有什么特点?直线的倾斜程度与加速度有什么关系?它表示小车在做
4、什么样的运动?从图可以看出,由于v-t图象是一 条倾斜的直线,速度随着时间逐渐变大,在时间轴上取取两点t1,t2,则t1,t2间的距离表示时间间隔?t= t2t1,t1时刻的速度为 v1, t2 时刻的速度为v2,则v2v1= ?v,?v即为间间隔?t内的速度的变化量。提问:?v与?t是什么关系?知识总结:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。匀变速直线运动的v-t图象是一条倾斜的直线。提问:匀变速直线运动的v-t图线的斜率表示什么?匀变速直线运动的v-t图线与纵坐标的交点表示什么?展示以下两个v-t图象,请同学们观察,并比较这两个v-t图象。知识总结:在匀变速直线运动中,如果
5、物体的速度随着时间均匀增加,这个运 动叫做匀加速直线运动;如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。分小组讨论每一小组由一位同学陈述小组讨论的结 果。学生回答:是一条平行于时间轴的直线。表示物体的速度不随时间变化,即物体作匀速直线运动。作匀速直线运动的物体,?v = 0, = 0,所以加速度为零。分小组讨论每一小组由一位同学陈述小组讨论的结果。由于v-t图象是一条直线,无论?t选在什么区间,对应 的速度v的变化量?v与时间t的变化量?t之比 都是一样的, 表示速度 的变化量与所用时间的比值,即加速度。所以v-t图象是一条倾斜的直线的运动,是加速度不变的运动。学生回答:v-t图
6、线的斜率在数值上等于速度v的变化量?v与时间t的变化量?t之比,表示速度的变化量与所用时间的比值,即加速度。v-t图线与纵坐标的交点表示t = 0 时刻的速度,即初速度v0。学生回答:甲乙两个v-t图象表示的运动都是匀变速直线运动,但甲图的速度随时间均匀增加,乙图的速度随着时间均匀减小。让学生通过自身的观察,发现匀加速直线运动与匀减速直线运动 的不同之处,能帮助学生正确理解匀变速直线运动。3、匀变速直线速度与时间的关系式提问:除用图象表示物体运动的速度与时间的关系外,是否还可以用公式表达物体运动的速度与时间的关系?教师引导,取t=0时为初状态,速度为初速度V0,取t时刻为末状态,速度为末速度V
7、,从初态到末态,时间的变化量为?t,则?t = t0,速度的变化量为?V,则?V = VV0提问:能否直接从图线结合数学知识得到速度与时间的关系式?知识总结:匀变速直线 运动中,速度与时间的关系式是V= V0 + a t匀变速直线运动的速度与时间关系的公式:V= V0 + a t可以这样理解:由于加速度a在数值上等于单位时间内速度的变化量,所以at就是整个运动过程中速度的变化量;再加上运动开始时物体的速度V0,就得到t时刻物体的速度V。4、例题例题1、汽车以40 km/h的速度匀速行驶,现以0.6 m/s2的加速度加速,10s后速度能达到多少?加速后经过多长汽车的速度达到80 km/h?例题2
8、、某汽车在某路面紧急刹车时,加速度的大小是6 m/s2,如果必须在2s内停下来,汽车的行驶速度不能超过多少?如果汽车以允许速度行驶,必须在1.5s内停下来, 汽车刹车匀减速运动加速度至少多大?分析:我们研究的是汽车从开始刹车到停止运动这个过程。在这个过程中,汽车做匀减速运动,加速度的大小是6 m/s2。由于是减速运动,加速度的方向与速度方向相反,如果设汽车运动的方向为正,则汽车的加速度方向为负,我们把它记为a = 一6 m/s2。这个过程的t时刻末速度V是0,初速度就是我们所求的允许速度,记为V0,它是这题所求的“速度”。过程的持续时间为t=2s学生回答:因为加速度a = ,所以?V =a ?
9、tVV0= a ?tVV0= a tV= V0 + a t学生回答:因为匀变速直线运动的v-t图象是一条倾斜的直线,所以v与t是线性关系,或者说v是t的一次函数,应符合y = k x + b 的形式。其中是图线的斜率,在数值上等于匀变速直线运动的加速度a,b是纵轴上的截距,在数值上等于匀变速直线运动的初速度V0,所以V= V0 + a t同学们思考3-5分钟,让一位同学说说自己的思路。其他同学纠正,补充。让同学计算。展示某同学的解题,让其他同学点评。解:初速度V0= 40 km/h = 11 m/s,加速度a = 0.6 m/s2,时间t=10 s。10s后的速度为V= V0 + a t= 1
10、1 m/s + 0.6 m/s210s= 17 m/s = 62 km/h由V= V0 + a t得同学们思考3-5分钟,让一位同学说说自己的思路。其他同学纠正,补充。让同学计算。展示某同学的解题,让其他同学点评。解:根据V= V0 + a t,有V0 = V a t= 0 (6m/s2)2s= 43 km/h汽车的速度不能超过43 km/h根据V= V0 + a t,有汽车刹车匀减速运动加速度至少9m/s2注意同一方向上的矢量运算,要先规定正方向,然后确定各物理量的正负(凡与规定正方向的方向相同为正,凡与规定正方向的方向相反为负。)然后代入V-t的关系式运算。五、 课堂小结六、 利用V-t图
11、 象得出匀速直线运动和匀变速直线运动的特点。七、 并进一步利用V-t图推导出匀变速直线运动的速度和时间的关系式。布置作业(1)请学生课后探讨课本第3 9页,“说一说”(2)请学生课后探讨课本第39页“问题与练习”中的14题。高一物理教案2万有引力与航天(一)知识网络托勒密:地心说人类对行 哥白尼:日心说星运动规 开普勒 第一定律(轨道定律)行星 第二定律(面积定律)律的认识 第三定律(周期定律)运动定律万有引力定律的发现万有引力定律的内容万有引力定律 F=G引力常数的测定万有引力定律 称量地球质量M=万有引力 的理论成就 M=与航天 计算天体质量 r=R,M=M=人造地球卫星 M=宇宙航行 G
12、 = mmrma第一宇宙速度7.9km/s三个宇宙速度 第二宇宙速度11.2km/s地三宇宙速度16.7km/s宇宙航行的成就(二)、重点内容讲解计算重力加速度1 在地球表面附近的重力加速度,在忽略地球自转的情况下,可用万有引力定律来计算。G=G =6.67=9.8(m/ )=9.8N/kg即在地球表面附近,物体的重力加速度g=9.8m/ 。这一结果表明,在重力作用下,物体加速度大小与物体质量无关。2 即算地球上空距地面h处的重力加速度g。有万有引力定律可得:g= 又g= , = ,g= g3 计算任意天体表面的重力加速度g。有万有引力定律得:g= (M为星球质量,R卫星球的半径),又g= ,
13、 = 。星体运行的基本公式在宇宙空间,行星和卫星运行所需的向心力,均来自于中心天体的万有引力。因此万有引力即为行星或卫星作圆周运动的向心力。因此可的以下几个基本公式。1 向心力的六个基本公式,设中心天体的质量为M,行星(或卫星)的圆轨道半径为r,则向心力可以表示为: =G =ma=m =mr =mr =mr =m v。2 五个比例关系。利用上述计算关系,可以导出与r相应的比例关系。向心力: =G ,F ;向心加速度:a=G , a ;线速度:v= ,v ;角速度: = , ;周期:T=2 ,T 。3 v与 的关系。在r一定时,v=r ,v ;在r变化时,如卫星绕一螺旋轨道远离或靠近中心天体时,
14、r不断变化,v、 也随之变化。根据,v 和 ,这时v与 为非线性关系,而不是正比关系。一个重要物理常量的意义根据万有引力定律和牛顿第二定律可得:G =mr .这实际上是开普勒第三定律。它表明 是一个与行星无关的物理量,它仅仅取决于中心天体的质量。在实际做题时,它具有重要的物理意义和广泛的应用。它同样适用于人造卫星的运动,在处理人造卫星问题时,只要围绕同一星球运转的卫星,均可使用该公式。估算中心天体的质量和密度1 中心天体的质量,根据万有引力定律和向心力表达式可得:G =mr ,M=2 中心天体的密度方法一:中心天体的密度表达式= ,V= (R为中心天体的半径),根据前面M的表达式可得:= 。当
15、r=R即行星或卫星沿中心天体表面运行时,= 。此时表面只要用一个计时工具,测出行星或卫星绕中心天体表面附近运行一周的时间,周期T,就可简捷的估算出中心天体的平均密度。方法二:由g= ,M= 进行估算,= ,=(三)常考模型规律示例总结1. 对万有引力定律的理解(1)万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的平方成反比,两物体间引力的方向沿着二者的连线。(2)公式表示:F= 。(3)引力常量G:适用于任何两物体。意义:它在数值上等于两个质量都是1kg的物体(可看成质点)相距1m时的相互作用力。G的通常取值为G=6。6710-11Nm
16、2/kg2。是英国物理学家卡文迪许用实验测得。(4)适用条件:万有引力定律只适用于质点间引力大小的计算。当两物体间的距离远大于每个物体的尺寸时,物体可看成质点,直接使用万有引力定律计算。当两物体是质量均匀分布的球体时,它们间的引力也可以直接用公式计算,但式中的r是指两球心间的距离。当所研究物体不能看成质点时,可以把物体假想分割成无数个质点,求出两个物体上每个质点与另一物体上所有质点的万有引力,然后求合力。(此方法仅给学生提供一种思路)(5)万有引力具有以下三个特性:普遍性:万有引力是普遍存在于宇宙中的任何有质量的物体(大到天体小到微观粒子)间的相互吸引力,它是自然界的物体间的基本相互作用之一。
17、相互性:两个物体相互作用的引力是一对作用力和反作用力,符合牛顿第三定律。宏观性:通常情况下,万有引力非常小,只在质量巨大的天体间或天体与物体间它的存在才有宏观的物理意义,在微观世界中,粒子的质量都非常小,粒子间的万有引力可以忽略不计。例1设地球的质量为M,地球的半径为R,物体的质量为m,关于物体与地球间的万有引力的说法,正确的是:A、地球对物体的引力大于物体对地球的引力。物体距地面的高度为h时,物体与地球间的万有引力为F= 。物体放在地心处,因r=0,所受引力无穷大。D、物体离地面的高度为R时,则引力为F=答案D总结(1)矫揉造作配地球之间的吸引是相互的,由牛顿第三定律,物体对地球与地球对物体
18、的引力大小相等。(2)F= 。中的r是两相互作用的物体质心间的距离,不能误认为是两物体表面间的距离。(3)F= 适用于两个质点间的相互作用,如果把物体放在地心处,显然地球已不能看为质点,故选项C的推理是错误的。变式训练1对于万有引力定律的数学表达式F= ,下列说法正确的是:A、公式中G为引力常数,是人为规定的。B、r趋近于零时,万有引力趋于无穷大。C、m1、m2之间的引力总是大小相等,与m1、m2的质量是否相等无关。D、m1、m2之间的万有引力总是大小相等,方向相反,是一对平衡力。答案C2. 计算中心天体的质量解决天体运动问题,通常把一个天体绕另一个天体的运动看作匀速圆周运动,处在圆心的天体称
19、作中心天体,绕中心天体运动的天体称作运动天体,运动天体做匀速圆周运动所需的向心力由中心天体对运动天体的万有引力来提供。式中M为中心天体的质量,Sm为运动天体的质量,a为运动天体的向心加速度,为运动天体的角速度,T为运动天体的周期,r为运动天体的轨道半径.(1)天体质量的估算通过测量天体或卫星运行的周期T及轨道半径r,把天体或卫星的运动看作匀速圆周运动.根据万有引力提供向心力,有 ,得注意:用万有引力定律计算求得的质量M是位于圆心的天体质量(一般是质量相对较大的天体),而不是绕它做圆周运动的行星或卫星的m,二者不能混淆.用上述方法求得了天体的质量M后,如果知道天体的半径R,利用天体的体积 ,进而
20、还可求得天体的密度. 如果卫星在天体表面运行,则r=R,则上式可简化为规律总结:掌握测天体质量的原理,行星(或卫星)绕天体做匀速圆周运动的向心力是由万有引力来提供的.物体在天体表面受到的重力也等于万有引力.注意挖掘题中的隐含条件:飞船靠近星球表面运行,运行半径等于星球半径.(2)行星运行的速度、周期随轨道半径的变化规律研究行星(或卫星)运动的一般方法为:把行星(或卫星)运动当做匀速圆周运动,向心力来源于万有引力,即:根据问题的实际情况选用恰当的公式进行计算,必要时还须考虑物体在天体表面所受的万有引力等于重力,即(3)利用万有引力定律发现海王星和冥王星例2已知月球绕地球运动周期T和轨道半径r,地
21、球半径为R求(1)地球的质量?(2)地球的平均密度?思路分析设月球质量为m,月球绕地球做匀速圆周运动,则: ,(2)地球平均密度为答案: ;总结:已知运动天体周期T和轨道半径r,利用万有引力定律求中心天体的质量。求中心天体的密度时,求体积应用中心天体的半径R来计算。变式训练2人类发射的空间探测器进入某行星的引力范围后,绕该行星做匀速圆周运动,已知该行星的半径为R,探测器运行轨道在其表面上空高为h处,运行周期为T。(1)该行星的质量和平均密度?(2)探测器靠近行星表面飞行时,测得运行周期为T1,则行星平均密度为多少?答案:(1) ; (2)高一物理教案3自由落体运动名师导航重点与剖析一、自由落体
22、运动1.定义:物体只在重力作用下从静止开始下落的运动.思考:不同的物体,下落快慢是否相同?为什么物体在真空中下落的情况与在空气中下落的情况不同?在空气中与在真空中的区别是,空气中存在着空气阻力.对于一些密度较小的物体,例如降落伞、羽毛、纸片等,在空气中下落时,受到的空气阻力影响较大;而一些密度较大的物体,如金属球等,下落时,空气阻力的影响就相对较小了.因此在空气中下落时,它们的快慢就不同了.在真空中,所有的物体都只受到重力,同时由静止开始下落,都做自由落体运动,快慢相同.2.不同物体的下落快慢与重力大小的关系(1)有空气阻力时,由于空气阻力的影响,轻重不同的物体的下落快慢不同,往往是较重的物体
23、下落得较快.(2)若物体不受空气阻力作用,尽管不同的物体质量和形状不同,但它们下落的快慢相同.3.自由落体运动的特点(1)v0=0(2)加速度恒定(a=g).4.自由落体运动的性质:初速度为零的匀加速直线运动.二、自由落体加速度1.自由落体加速度又叫重力加速度,通常用g来表示.2.自由落体加速度的方向总是竖直向下.3.在同一地点,一切物体的自由落体加速度都相同.4.在不同地理位置处的自由落体加速度一般不同.规律:赤道上物体的重力加速度最小,南(北)极处重力加速度;物体所处地理位置的纬度越大,重力加速度越大.三、自由落体运动的运动规律因为自由落体运动是初速度为0的匀加速直线运动,所以匀变速直线运
24、动的基本公式及其推论都适用于自由落体运动.1.速度公式:v=gt2.位移公式:h= gt23.位移速度关系式:v2=2gh4.平均速度公式: =5.推论:h=gT2问题与探究问题1 物体在真空中下落的情况与在空气中下落的情况相同吗?你有什么假设与猜想?探究思路:物体在真空中下落时,只受重力作用,不再受到空气阻力,此时物体的加速度较大,整个下落过程运动加快.在空气中,物体不但受重力还受空气阻力,二者方向相反,此时物体加速度较小,整个下落过程较慢些.问题2 自由落体是一种理想化模型,请你结合实例谈谈什么情况下,可以将物体下落的运动看成是自由落体运动.探究思路:回顾第一章质点的概念,谈谈我们在处理物
25、理问题时,根据研究问题的性质和需要,如何抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化,进一步理解这种重要的科学研究方法.问题3 地球上的不同地点,物体做自由落体运动的加速度相同吗?探究思路:地球上不同的地点,同一物体所受的重力不同,产生的重力加速度也就不同.一般来讲,越靠近两极,物体做自由落体运动的加速度就越大;离赤道越近,加速度就越小.典题与精析例1 下列说法错误的是A.从静止开始下落的物体一定做自由落体运动B.若空气阻力不能忽略,则一定是重的物体下落得快C.自由落体加速度的方向总是垂直向下D.满足速度跟时间成正比的下落运动一定是自由落体运动精析:此题主要
26、考查自由落体运动概念的理解,自由落体运动是指物体只在重力作用下从静止开始下落的运动.选项A没有说明是什么样的物体,所受空气阻力能否忽略不得而知;选项C中自由落体加速度的方向应为竖直向下,初速度为零的匀加速直线运动的速度都与时间成正比,但不一定是自由落体运动.答案:ABCD例2 小明在一次大雨后,对自家屋顶滴下的水滴进行观察,发现基本上每滴水下落的时间为1.5 s,他由此估计出自家房子的大概高度和水滴落地前瞬间的速度.你知道小明是怎样估算的吗?精析:粗略估计时,将水滴下落看成是自由落体,g取10 m/s2,由落体运动的规律可求得.答案:设水滴落地时的速度为vt,房子高度为h,则:vt=gt=10
27、1.5 m/s=15 m/sh= gt2= 101.52 m=11.25 m.绿色通道:学习物理理论是为了指导实践,所以在学习中要注重理论联系实际.分析问题要从实际出发,各种因素是否对结果产生影响都应具体分析.例3 一自由下落的物体最后1 s下落了25 m,则物体从多高处自由下落?(g取10 m/s2)精析:本题中的物体做自由落体运动,加速度为g=10 N/kg,并且知道了物体最后1 s的位移为25 m,如果假设物体全程时间为t,全程的位移为s,该物体在前t-1 s的时间内位移就是s-25 m,由等式h= gt2和h-25= g(t-1)2就可解出h和t.答案:设物体从h处下落,历经的时间为t
28、.则有:h= gt2 h-25= g(t-1)2 由解得:h=45 m,t=3 s所以,物体从离地45 m高处落下.绿色通道:把物体的自由落体过程分成两段,寻找等量关系,分别利用自由落体规律列方程,联立求解.自主广场基础达标1.在忽略空气阻力的情况下,让一轻一重的两石块从同一高度处同时自由下落,则A.在落地前的任一时刻,两石块具有相同的速度、位移和加速度B.重的石块下落得快、轻的石块下落得慢C.两石块在下落过程中的平均速度相等D.它们在第1 s、第2 s、第3 s内下落的高度之比为135答案:ACD2.甲、乙两球从同一高度处相隔1 s先后自由下落,则在下落过程中A.两球速度差始终不变 B.两球
29、速度差越来越大C.两球距离始终不变 D.两球距离越来越大答案:AD3.物体从某一高度自由落下,到达地面时的速度与在一半高度时的速度之比是A. 2 B. 1C.21 D.41答案:B4.从同一高度处,先后释放两个重物,甲释放一段时间后,再释放乙,则以乙为参考系,甲的运动形式是A.自由落体运动 B.匀加速直线运动a g p= C.匀加速直线运动a g D.匀速直线运动答案:D5.A物体的质量是B物体质量的5倍,A从h高处,B从2h高处同时自由落下,在落地之前,以下说法正确的是A.下落1 s末,它们的速度相同B.各自下落1 m时,它们的速度相同C.A的加速度大于B的加速度D.下落过程中同一时刻,A的
30、速度大于B的速度答案:AB6.从距离地面80 m的高空自由下落一个小球,若取g=10 m/s2,求小球落地前最后1 s内的位移.答案:35 m综合发展7.两个物体用长L=9.8 m的细绳连接在一起,从同一高度以1 s的时间差先后自由下落,当绳子拉紧时,第二个物体下落的时间是多长?答案:0.5 s8.一只小球自屋檐自由下落,在t=0.2 s内通过高度为h=2 m的窗口,求窗口的顶端距屋檐多高?(取g=10 m/s2)答案:2.28 m9.如图2-4-1所示,竖直悬挂一根长15 m的杆,在杆的下方距杆下端5 m处有一观察点A,当杆自由下落时,从杆的下端经过A点起,试求杆全部通过A点所需的时间.(g取10 m/s2)图2-4-1答案:1 s高一物理教案范文汇总第 18 页 共 18 页