《精品最新高三数学知识点总结精选5篇.doc》由会员分享,可在线阅读,更多相关《精品最新高三数学知识点总结精选5篇.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、最新高三数学知识点总结精选5篇高三是高中学习生涯中最辛苦的一年,而高中数学也是比较难的一门学科。那么,如何学好高中数学呢?下面就是小编给大家带来的高三数学知识点,希望能帮助到大家大家!高三数学知识点11.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是
2、否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间-a,a上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“ ”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。13.如何应用函数的单调性与奇偶性解题?比较函数值的大小;解抽象函数不等式;求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制
3、条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是
4、“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是 ”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a b 0,a 0.24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样
5、的无穷等比数列的所有项的和必定存在?27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?32.你还记得三角化简的
6、通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)33.反正弦、反余弦、反正切函数的取值范围分别是34.你还记得某些特殊角的三角函数值吗?35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?36.函数的图象的平移,方程的平移以及点的平移公式易混:(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为y=2(x+2)+4-3,即y=2x+5.(2)方程
7、表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为2(x+2)-(y+3)+4=0,即y=2x+5.(3)点的平移公式:点P(x,y)按向量平移到点P(x,y),则x=x+hy=y+k.37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)38.形如的周期都是,但的周期为。39.正弦定理时易忘比值还等于2R。高三数学知识点21.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)
8、 f(-x)=0或(f(x) (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为a,b,其复合函数fg(x)的定义域由不等式a g(x) b解出即可;若已知fg(x)的定义域为a,b,求f(x)的定义域,相当于x a,b时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心
9、(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对x R时
10、,f(x+a)=f(x-a)或f(x-2a)=f(x)(a 0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2a的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4a的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a b)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对x R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k
11、=f(x)有解k D(D为f(x)的值域);6.a f(x)恒成立a f(x)max,;a f(x)恒成立a f(x)min;7.(1)(a 0,a 1,b 0,n R+);(2)logaN=(a 0,a 1,b 0,b (3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a 0,a 1,N 8.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函
12、数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有ff-1(x)=x(x B),f-1f(x)=x(x A);11.处理二次函数的问题勿忘数形结合二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;12.依据单调性利用一次函数在区间上的保号性可解决求一类参数的范围问题;13.恒成立问题的处理方法(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;高三数学知识点
13、3a(1)=a,a(n)为公差为r的等差数列通项公式:a(n)=a(n-1)+r=a(n-2)+2r=.=an-(n-1)+(n-1)r=a(1)+(n-1)r=a+(n-1)r.可用归纳法证明。n=1时,a(1)=a+(1-1)r=a。成立。假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+(k+1)-1r.通项公式也成立。因此,由归纳法知,等差数列的通项公式是正确的。求和公式:S(n)=a(1)+a(2)+.+a(n)=a+(a+r)+.+a+(n-1)r=na+r1+2+.+(n-1)=na+n(n-1
14、)r/2同样,可用归纳法证明求和公式。a(1)=a,a(n)为公比为r(r不等于0)的等比数列通项公式:a(n)=a(n-1)r=a(n-2)r2=.=an-(n-1)r(n-1)=a(1)r(n-1)=ar(n-1).可用归纳法证明等比数列的通项公式。求和公式:S(n)=a(1)+a(2)+.+a(n)=a+ar+.+ar(n-1)=a1+r+.+r(n-1)r不等于1时,S(n)=a1-rn/1-rr=1时,S(n)=na.同样,可用归纳法证明求和公式。高三数学知识点41、直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜
15、角为0度。因此,倾斜角的取值范围是0 180 2、直线的斜率定义:倾斜角不是90 的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90 (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。3、直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0 时,k=0,直线的方程是y=y1。当直线的斜率为90 时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一
16、点的横坐标都等于x1,所以它的方程是x=x1。高三数学知识点5一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中x k + 6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。二、函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法三、函数的值域的常用求法:1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法四、函数的最值的常用求法:1、配方法;2、
17、换元法;3、不等式法;4、几何法;5、单调性法五、函数单调性的常用结论:1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。2、若f(x)为增(减)函数,则-f(x)为减(增)函数。3、若f(x)与g(x)的单调性相同,则fg(x)是增函数;若f(x)与g(x)的单调性不同,则fg(x)是减函数。4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。六、函数奇偶性的常用结论:1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x
18、)既是奇函数又是偶函数,则f(x)=0(反之不成立)。2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。3、一个奇函数与一个偶函数的积(商)为奇函数。4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2f(x)+f(-x)+1/2f(x)+f(-x),该式的特点是:右端为一个奇函数和一个偶函数的和。1.精选最新高三数学知识点总结三篇2.最新高三数学知识点总结三篇3.最新高三数学重点知识点总结三篇4.最新高三数学复习知识点总结三篇5.精选最新高一数学知识点总结归纳5篇被忽略的温暖作文高三优秀范文 随着科技快速地发展,人际交往变得越来越便捷。可也正因为如此,人与人之间渐渐变得冷 2021高三百日誓师大会发言稿5篇 高考已经吹响一百天决战冲锋的号角。高三的同学们请坚信,正是在这里,新的辉煌将张开 不该忽略的关爱作文高三范文 人们每天都会干很多件事,当然也会忽略很多事。有些事情忽略了不打紧,比如今天忘记买 高三作文忽略800字范文赏析 人生中被忽略的东西有很多。有的等你想起来补救时还不晚,有的却再也无法补救。我就有第 15 页 共 15 页