有关功率谱分析的相关总结(共7页).doc

上传人:飞****2 文档编号:16805206 上传时间:2022-05-19 格式:DOC 页数:7 大小:39KB
返回 下载 相关 举报
有关功率谱分析的相关总结(共7页).doc_第1页
第1页 / 共7页
有关功率谱分析的相关总结(共7页).doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《有关功率谱分析的相关总结(共7页).doc》由会员分享,可在线阅读,更多相关《有关功率谱分析的相关总结(共7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上有关功率谱分析的相关总结谱是个很不严格的东西,常常指信号的Fourier变换, 是一个时间平均(time average)概念 功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析,能量有限的信号通常为能量信号,他们的傅里叶变换是收敛的),所表现的是单位频带内信号功率随频率的变换情况。保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。有两个重要区别: 1。功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。(随机过程有频谱吗?

2、)(随机的频域序列) 2。功率概念和幅度概念的差别。此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶矩是否存在并且二阶矩的Fourier变换收敛; 而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。 频谱和功率谱的区别在于:(1)信号通常分为两类:能量信号和功率信号;(2)一般来讲,能量信号其傅氏变换收敛(即存在),而功率信号傅氏变换通常不收敛,当然,若信号存在周期性,可引入特殊数学函数(Delta)表征傅氏变换的这种非收敛性;(3)信号是信息的搭载工具,而信息与随机性紧密相关,所以实际信号多为随机信号,这类信号的特点是状态随机性随时间无限延伸,能量无

3、限。换句话说,随机信号大多属于功率信号而非能量信号,它并不存在傅氏变换,亦即不存在频谱;(4)若撇开搭载信息的有用与否,随机信号又称随机过程,很多噪声属于特殊的随机过程,它们的某些统计特性具有平稳性,其均值和自相关函数具有平稳性。对于这样的随机过程,自相关函数蜕化为一维确定函数,前人证明该确定相关函数存在傅氏变换;(5)能量信号频谱通常既含有幅度也含有相位信息;幅度谱的平方(二次量纲)又叫能量谱,它描述了信号能量的频域分布;功率信号的功率谱描述了信号功率随频率的分布特点,也已证明,信号功率谱恰好是其自相关函数的傅氏变换;(6)实际中我们获得的往往仅仅是信号的一段支撑,此时即使信号为功率信号,截

4、断之后其傅氏变换收敛,但此变换结果严格来讲不属于任何“谱”;(7)对于(6)中所述变换若取其幅度平方,可作为信号功率谱的近似,是为经典的“周期图法”;(8)FFT是DFT的快速实现,DFT是DTFT的频域采样,DTFT是FT的频域延拓。人们不得已才利用DFT近似完成本属于FT的任务。若仅提FFT,是非常不专业的。 功率谱是个什么概念?它有单位吗?随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。一般用具有统计特性的功率谱来作为谱分析的依据。功率谱与自相关函数是一个傅氏变换对。功率谱具有单位频率的平均功率量纲。所以标准叫法是功率谱密度。通过功率谱密度函数,可以看出随机信号的能量

5、随着频率的分布情况。像白噪声就是平行于w轴,在w轴上方的一条直线。功率谱密度,从名字分解来看就是说,观察对象是功率,观察域是谱域,通常指频域,密度,就是指观察对象在观察域上的分布情况。一般我们讲的功率谱密度都是针对平稳随机过程的,由于平稳随机过程的样本函数一般不是绝对可积的,因此不能直接对它进行傅立叶分析。可以有三种办法来重新定义谱密度,来克服上述困难。一是用相关函数的傅立叶变换来定义谱密度;二是用随机过程的有限时间傅立叶变换来定义谱密度;三是用平稳随机过程的谱分解来定义谱密度。(对于平稳随机过程)三种定义方式对应于不同的用处,首先第一种方式前提是平稳随机过程不包含周期分量并且均值为零,这样才

6、能保证相关函数在时差趋向于无穷时衰减,光靠相关函数解决不了许多问题,要求太严格了;对于第二种方式,虽然一个平稳随机过程在无限时间上不能进行傅立叶变换,但是对于有限区间,傅立叶变换总是存在的,可以先架构有限时间区间上的变换,在对时间区间取极限,这个定义方式就是当前快速傅立叶变换(FFT)估计谱密度的依据;第三种方式是根据维纳的广义谐和分析理论:Generalized harmonic analysis, Acta Math, 55(1930),117-258,利用傅立叶-斯蒂吉斯积分,对均方连续的零均值平稳随机过程进行重构,在依靠正交性来建立的。另外,对于非平稳随机过程,也有三种谱密度建立方法。

7、功率谱密度的单位是G的平方/频率。就是就是函数幅值的均方根值与频率之比。是对随机振动进行分析的重要参数。功率谱密度的国际单位是什么?如果是加速度功率谱密度,加速度的单位是m/s2,那么,加速度功率谱密度的单位就是(m/s2)2/Hz,而Hz的单位是1/s,经过换算得到加速度功率谱密度的单位是m2/s3.同理,如果是位移功率谱密度,它的单位就是m2*s,如果是弯矩功率谱密度,单位就是(N*m)2*s位移功率谱m2*s速度功率谱m2/s加速度功率谱m2/s3在北理版信号与系统中,信号可以分成能量信号与功率信号,非周期能量信号具有能量谱密度,是傅立叶变换的平方,功率信号具有功率谱密度,其与自相关函数

8、是一对傅立叶变换对,等于傅立叶变换的平方/区间长度。不能混淆。能量信号是没有功率谱的。胡广书老师的书上找到这么一段话,“随机信号在时间上是无限的,在样本上也是无穷多,因此随机信号的能量是无限的,它应是功率信号。功率信号不满足付里叶变换的绝对可积的条件,因此其付里叶变换是不存在的。如确定性的正弦函数的付里叶变换是不存在,只有引入了冲激函数才求得其付里叶变换。因此,对随机信号的频谱分析,不再简单的是频谱,而是功率谱。”周期信号是功率信号,但是周期信号可能是确定性信号,也可能是随机信号,但是周期信号是存在功率谱密度的。对于持续时间无限长的随机信号来说,也是存在功率谱密度的。一般来讲,对于随机信号,由

9、于持续期时间无限长,不满足绝对可积与能量可积的条件,因此不存在傅立叶变换,所以我们只能研究其功率谱,因为样本函数的功率毕竟是有限哦。对于确定性信号而言,里面存在能量信号,是没有功率谱密度的,也存在功率信号,是有功率谱密度的。所以信号的频谱与是否是确定性信号没有必然联系。以下论点来源于研学论坛,我认为都存在一点问题,主要是表述上不是很准确!频谱是信号的傅立叶变换。它描述了信号在各个频率上的分布大小。频谱的平方(当能量有限,平均功率为0时称为能量谱)描述了信号能量在各个频率上的分布大小。功率谱是针对随机信号而言,是随机信号的自相关函数的离散傅立叶变换(注意自相关函数是确定性序列,离散信号本身是不存

10、在离散傅立叶变换的)。它描述了随机信号的功率在各个频率上的分布大小,而不是能量分布大小。计算过程中,都是通过样本数据的快速傅立叶变换来计算。但不同的是,信号的频谱是复数,包含幅频响应和相频响应,重复计算时的结果基本相同。而随机信号的功率谱也可以对数据进行FFT,但必须计算模值的平方,因为功率谱是实数。而且换一组样本后,计算的结果略有不同,因为随机信号的样本取值不同。要得到真实的功率谱必须进行多次平均,次数越多越好。功率谱可以从两方面来定义,一个是楼主说的自相关函数的傅立叶变换,另一个是时域信号傅氏变换模平方然后除以时间长度。第一种定义就是常说的维纳辛钦定理,而第二种其实从能量谱密度来的。根据p

11、arseval定理,信号傅氏变换模平方被定义为能量谱,即单位频率范围内包含的信号能量。自然,能量跟功率有一个时间平均的关系,所以,能量谱密度在时间上平均就得到了功率谱。(这种说法不准确)直接法:直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。Matlab代码:clear;Fs=1000; %采样频率n=0:1/Fs:1;%产生含有噪声的序列xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n);window=b

12、oxcar(length(xn); %矩形窗nfft=1024;Pxx,f=periodogram(xn,window,nfft,Fs); %直接法plot(f,10*log10(Pxx);改进的直接法:对于直接法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。1. Bartlett法Bartlett平均周期图的方法是将N点的有限长序列x(n)分段求周期图再平均。Matlab代码:clear;Fs=1000;n=0:1/Fs:1;xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n);nfft=1024;w

13、indow=boxcar(length(n); %矩形窗noverlap=0; %数据无重叠p=0.9; %置信概率Pxx,Pxxc=psd(xn,nfft,Fs,window,noverlap,p);index=0:round(nfft/2-1);k=index*Fs/nfft;plot_Pxx=10*log10(Pxx(index+1);plot_Pxxc=10*log10(Pxxc(index+1);figure(1)plot(k,plot_Pxx);pause;figure(2)plot(k,plot_Pxx plot_Pxx-plot_Pxxc plot_Pxx+plot_Pxxc)

14、;2. Welch法Welch法对Bartlett法进行了两方面的修正,一是选择适当的窗函数w(n),并再周期图计算前直接加进去,加窗的优点是无论什么样的窗函数均可使谱估计非负。二是在分段时,可使各段之间有重叠,这样会使方差减小。 Matlab代码:clear;Fs=1000;n=0:1/Fs:1;xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n);nfft=1024;window=boxcar(100); %矩形窗window1=hamming(100); %汉明窗window2=blackman(100); %blackman窗noverla

15、p=20; %数据无重叠range=half; %频率间隔为0 Fs/2,只计算一半的频率Pxx,f=pwelch(xn,window,noverlap,nfft,Fs,range);Pxx1,f=pwelch(xn,window1,noverlap,nfft,Fs,range);Pxx2,f=pwelch(xn,window2,noverlap,nfft,Fs,range);plot_Pxx=10*log10(Pxx);plot_Pxx1=10*log10(Pxx1);plot_Pxx2=10*log10(Pxx2);figure(1)plot(f,plot_Pxx);pause;figure(2)plot(f,plot_Pxx1);pause;figure(3)plot(f,plot_Pxx2);专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁