《2013高考数学人教B版课后作业:9-7-用向量方法证明平行与垂直(理))(共11页).doc》由会员分享,可在线阅读,更多相关《2013高考数学人教B版课后作业:9-7-用向量方法证明平行与垂直(理))(共11页).doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上9-7 用向量方法证明平行与垂直(理) 1.已知正方体ABCDA1B1C1D1中,E为侧面BCC1B1的中心若zxy,则xyz的值为() A1B. C2D.答案C解析.xyz12.2(2011银川月考)若直线l的方向向量为a,平面的法向量为n,能使l的可能是()Aa(1,0,0),n(2,0,0)Ba(1,3,5),n(1,0,1)Ca(0,2,1),n(1,0,1)Da(1,1,3),n(0,3,1)答案D解析欲使l,应有na,na0,故选D.3二面角l等于120,A、B是棱l上两点,AC、BD分别在半平面、内,ACl,BDl,且ABACBD1,则CD的长等于()A
2、. B. C2 D.答案C解析如下图二面角l等于120,与夹角为60.由题设知,|1,来源:K|2|2|2|2|222232cos604,|2.4(2011宁德模拟)已知空间三点A(0,2,3),B(2,1,6),C(1,1,5)若|a|,且a分别与,垂直,则向量a为()A(1,1,1)B(1,1,1)C(1,1,1)或(1,1,1)D(1,1,1)或(1,1,1)答案C解析设a(x,y,z),由条件知(2,1,3),(1,3,2),a,a,|a|,将选项代入检验知选C.5平面经过三点A(1,0,1)、B(1,1,2),C(2,1,0),则下列向量中与平面的法向量不垂直的是()A. B(6,2
3、,2)C(4,2,2) D(1,1,4)答案D解析设平面的法向量为n,则n,n,n,所有与(或、)平行的向量或可用与线性表示的向量都与n垂直,故选D.6将边长为1的正方形ABCD沿对角线BD折成直二面角,若点P满足,则|2的值为()A. B2C. D.来源:K答案D解析由题意,翻折后ACABBC,ABC60,|2|2|2|2|2211cos601cos451cos45.7(2011南通模拟)设平面与向量a(1,2,4)垂直,平面与向量b(2,3,1)垂直,则平面与的位置关系是_答案垂直解析ab1223(4)10,且a与b分别是平面、的法向量,.8(2011金华模拟)已知点A(4,1,3),B(
4、2,5,1),C为线段AB上一点且,则点C的坐标为_答案(,1,)解析C为线段AB上一点,存在实数0,使,又(2,6,2),(2,6,2),(,2,),C(,1,)9.如下图,正方体ABCDA1B1C1D1的棱长为1,E、F分别是棱BC、DD1上的点,如果B1E平面ABF,则CE与DF的和的值为_答案1解析以D1为原点,直线D1A1、D1C1、D1D为x轴、y轴、z轴建立空间直角坐标系,则A(1,0,1),B(1,1,1),B1(1,1,0),设DFt,CEk,则D1F1t,F(0,0,1t),E(k,1,1),要使B1E平面ABF,易知ABB1E,故只要B1EAF即可,(1,0,t),(k1
5、,0,1),1kt0,kt1,即CEDF1.10(2011绍兴月考)已知E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点,用向量方法求证:(1)E、F、G、H四点共面;(2)BD平面EFGH.证明(1)如上图,(),由共面向量定理知:E、F、G、H四点共面(2)(),且E、H、B、D四点不共线,EHBD.又EH平面EFGH,BD平面EFGH,来源:高&考%资(源#网 wxcKS5U.COMBD平面EFGH.11.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB4,AC6,BD8,CD2,则该二面角的大小为()A150 B45
6、 C60 D120答案C解析由条件知,0,0,.|2|2|2|2222624282268cos,11696cos,(2)2,cos,120,所以二面角的大小为60.12在棱长为1的正方体AC1中,O1为B1D1的中点求证:BO1平面ACD1.证明建立如下图所示的空间直角坐标系,O为AC的中点,由于正方体的棱长为1,则B(1,0,0),O1(,1),D1(0,1,1),O(,0)(,1),(,1),BO1OD1,又BO1平面ACD1,OD1平面ACD1,BO1平面ACD1.13.直三棱柱ABCABC中,ACBCAA,ACB90,D、E分别为AB、BB的中点求证:CEAD.证明设a,b,c,根据题
7、意,|a|b|c|,且abbcca0,bc,()()cba.c2b20.,即CEAD.14.在长方体ABCDA1B1C1D1中,AA12AB2BC,E、F、E1分别是棱AA1,BB1,A1B1的中点求证:平面C1E1F平面CEF.证明以D为原点,DA,DC,DD1所在的直线为x轴,y轴,z轴建立空间直角坐标系,设BC1,则C(0,1,0),E(1,0,1),C1(0,1,2),F(1,1,1),E1(1,2)设平面C1E1F的法向量n(x,y,z)(1,0),(1,0,1),即,令x1,则y2,z1,n(1,2,1)设平面EFC的法向量为m(a,b,c),由(0,1,0),(1,0,1),即.
8、令a1,则m(1,0,1)mn1(1)20110,平面C1E1F平面CEF.15(2011海口调研)在四棱锥PABCD中,平面PAD平面ABCD,PAD是等边三角形,底面ABCD是边长为2的菱形,BAD60,E是AD的中点,F是PC的中点(1)求证:BE平面PAD;(2)求证:EF平面PAB;(3)求直线EF与平面PBE所成角的余弦值解析解法一:(1)E是AD中点,连接PE,AB2,AE1.BE2AB2AE22ABAEcosBAD41221cos603.AE2BE2134AB2,BEAE.又平面PAD平面ABCD,交线为AD,BE平面PAD.(2)取PB中点为H,连接FH,AH,AE綊BC,又
9、HF是PBC的中位线,HF綊BC,AE綊HF,AHFE是平行四边形,EFAH,又EF平面PAB,AH平面PAB,EF平面PAB.(3)由(1)知,BCBE,PEBC,又PE,BE是平面PBE内两相交直线,BC平面PBE,又由(2)知,HFBC,HF平面PBE,FEH是直线EF与平面PBE所成的角,易知BEPE,在RtPEB中,EH,tanFEH,cosFEH.故直线EF与平面PBE所成角的余弦值为.解法二:容易证明EP,EA,EB两两垂直,建立空间直角坐标系Exyz如下图易求BEPE,则E(0,0,0),A(1,0,0),B(0,0),C(2,0),D(1,0,0),P(0,0,),因为F是PC的中点,则F(1,)来源:高&考%资(源#网 wxc(1)010000,即EBEA,00000,即EBEP,EA,EP是平面PAD内的两相交直线,来源:高&考%资(源#网 wxcKS5U.COMEB平面PAD.(2)取PB中点为H,连接FH,AH,则H(0,),(1,),(0,)(1,0,0)(1,),又EF平面PAB,AH平面PAB,EF平面PAB.(3)y轴平面PBE,z轴平面PBE,平面PBE的法向量为n(1,0,0),(1,),设直线EF与平面PBE所成角为,sin,cos,故直线EF与平面PBE所成角的余弦值为. 专心-专注-专业