《考研数学热点问题之高等数学篇超强总结.doc》由会员分享,可在线阅读,更多相关《考研数学热点问题之高等数学篇超强总结.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、考研数学热点问题之高等数学篇超强总结考研数学热点问题之高等数学篇超强总结行政管理在职研究生考研数学热点问答之高等数学篇答疑名师:陈文灯黄先开曹显兵1.目前阶段高数应该如何准备呢?答:高数是数学内容最多的一部分,数学1要60%高等数学,数学2考到80%,数学3、数学4也要考到50%的分数,我想这部分分块,函数极限或者连续这一块的重点是什么?这个时候把握一下重点是我们求极限的是不定式的极限或者两个重要的极限,另外函数的连续性的探讨这是考试的重点,导数和微分,其实重点不是给一个函数考导数,所以导数这个地方的重点是导数的定义,也就是抽象函数的可导性。另外就是积分,定积分,分段函数的积分,分段函数,带绝
2、对值的函数,总而言之看上不好处理的函数的积分是考试的重点,而且一定要注意积分的对称性,我们要利用分段积分去掉绝对值把积分求出来,另外就是中值定律这个地方一般每年要考一个题,看看以往考过什么样的题型。多维函数的微积分,一个是多维隐函数的求导,包括复合函数这是考试的重点。二成积分的计算,当然数学1里面还包括了三成积分,这里面每年都考一个题目。另外曲线和曲面积分,这也是必考的。一阶的YZ方程,还有无穷奇数,无穷奇数的求和,主要是间接的展开法,重点主要是这些。2.多元函数微积分是新增加的知识点,您能否讲讲这一块应该怎样复习?二重积分如何复习?答:函数微积分因为是第一年增加,所以都会考最基本的内容,像线
3、性代数增加的时候第一年考是求具体的三节矩阵的特定值。所以二层积分今年初次考,比如二级积分交换基本次序,这个你一定要会。积分的区域要画出来,各级函数画清楚,根据积分类型确定积分顺序,确定积分线。二层积分首先你要确定是X积分还是Y积分,你在这个区域画一条线,如果是X积分你做一条平行X轴的射线穿过这个区域。穿进就是积分的下限,穿出就是积分的上限。一般把这个基本原则掌握了,考试就不会有问题了。3.请问在数学二中今年考试大纲中新增多元微分考试要求,请问今年考试如何把握?答:数学二这位网友说的不对,增加了多元函数的微分和积分,2022年这个章节肯定得考,每年新增加一章内容肯定要考,不象增加一个小小知识点不
4、一定考,增加一个整个章节肯定得考。而且考试的难度应该是最基本的,你这个基本知识、基本概念、基本计算方法掌握了基本就可以了。一个是微分这个地方,行政管理在职研究生行政管理在职研究生多元函数微分重点在复合函数的偏导数,尤其是隐函数的偏导数,你不要做太复杂的,你做一些简单的就可以了。数学二的同学只要把基本的多元复合函数、多元隐函数的偏导数掌握就可以了。另外一个地方要注意的是积分的计算,这个地方也是个重点,多元函数微分和积分。X型区域、Y型区域怎么样找到积分限,计算方法你掌握了这个题是没有问题的。4.请问一下高数如何复习能抓住分?答:数学要考高分首先要明确数学要考些什么。我个人的理解和看法数学主要是考
5、四个方面,一个考基础,包括基本概念、基本理论、基本运算,数学本来就是一门基础的学科,如果基础、概念、基本运算不太清楚,运算不太熟练那你肯定是考不好的。所以基础一定要打扎实。我觉得高数的基础应该着重放在极限、导数、不定积分这三方面,后面当然还有定积分、一元微积分的应用,还有中值定理、多元函数、微分、线面积分等等内容,这些内容可以看着刚才我所说的三部分内容的联系和应用,这就是它的基础。数学要考的第二部分就是简单的分析综合能力。因为现在高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。还有一个就是数学的建模能力,也就是解应用题的能力。解应用题这方面就比较不好说了,因为它要求的知识面
6、比较广了,包括数学的知识比较要扎实,还有几何、物理、化学、力学等等这些好多知识。当然它主要考的就是数学在几何中的应用,在力学中的应用,在物理中的吸引力、电力做功等等这些方面。数学要考的第四个方面就是你的运算的熟练程度,换句话说就是你解题的速度。如果能够围绕着这几个方面进行复习,数学考高分我想还是完全可能的。从一些研究生介绍的经验来看,他们也都是这样做的。说到解题速度,我个人认为一个方面在头脑中应该储存着一些最基本的运算结果。比方说A的平方减X平方,开平方,圆在零至A上的积分就等于四分之A的平方。还有就是我们有些最基本的一些公式,像SinX的n次方在零到二分之上,其结果当N是奇数的时候,当N是偶
7、数的时候它们的结果马上就知道。再比方函数像LogX加上根号A平方减X平方括号它的导数,我们马上就应该知道,就是等于根号A平方加X平方分之一,这个应该马上就知道,免得再去计算。再比如常用的变量替换要记住,还有就是常用的一些辅助函数的做法要记得非常牢。所以脑子中有这些基本的储存,到时候做题就快了。当然了最重要的是平时还是要多加训练,我觉得有的同学就认为现在数学应该放一放,该看看其他的学科了。这种做法是不对的!数学应该一抓到底,应该经常练,一天至少保证三个小时。把我们平时讲的一些概念、定理、公式复习好,牢牢地记住。同时数学还是一种基本技能的训练,像骑自行车一样。尽管你原来骑得非常好,非常溜,但是你长
8、时间不骑,你再骑总有点不习惯。所以经常练习是很重要的,天天做、天天看,一直到考试的那一天。这样的话,就绝对不会生疏了,解题速度就能够跟上去。行政管理在职研究生行政管理在职研究生5.多元函数微积分是新增加的知识点,这一块应该怎样复习?二重积分如何复习?答:函数微积分因为是第一年增加,所以都会考最基本的内容,像线性代数增加的时候第一年考是求具体的三节矩阵的特定值。所以二层积分今年初次考,比如二级积分交换基本次序,这个你一定要会。积分的区域要画出来,各级函数画清楚,根据积分类型确定积分顺序,确定积分线。二层积分首先你要确定是X积分还是Y积分,你在这个区域画一条线,如果是X积分你做一条平行X轴的射线穿
9、过这个区域。穿进就是积分的下限,穿出就是积分的上限。一般把这个基本原则掌握了,考试就不会有问题了。行政管理在职研究生扩展阅读:Qctkmq考研数学总结高数篇生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。泰戈尔上册:函数(高等数学的主要研究对象)极限:数列的极限(特殊)函数的极限(一般)极限的本质是通过已知某一个量(自变量)的变化趋势,去研究和探索另外一个量(因变量)的变化趋势由极限可以推得的一些性质:局部有界性、局部保号性应当注意到,由极限所得到的性质通常都是只在局部范围内成立在提出极限概念的时候并未涉及
10、到函数在该点的具体情况,所以函数在某点的极限与函数在该点的取值并无必然联系连续:函数在某点的极限等于函数在该点的取值连续的本质:自变量无限接近,因变量无限接近导数的概念本质是函数增量与自变量增量的比值在自变量增量趋近于零时的极限,更简单的说法是变化率微分的概念:函数增量的线性主要部分,这个说法有两层意思,一、微分是一个线性近似,二、这个线性近似带来的误差是足够小的,实际上任何函数的增量我们都可以线性关系去近似它,但是当误差不够小时,近似的程度就不够好,这时就不能说该函数可微分了不定积分:导数的逆运算什么样的函数有不定积分定积分:由具体例子引出,本质是先分割、再综合,其中分割的作用是把不规则的整
11、体划作规则的许多个小的部分,然后再综合,最后求极限,当极限存在时,近似成为精确什么样的函数有定积分求不定积分(定积分)的若干典型方法:换元、分部,分部积分中考虑放到积分号后面的部分,不同类型的函数有不同的优先级别,按反对幂三指的顺序来记忆定积分的几何应用和物理应用高等数学里最重要的数学思想方法:微元法微分和导数的应用:判断函数的单调性和凹凸性微分中值定理,可从几何意义去加深理解泰勒定理:本质是用多项式来逼近连续函数。要学好这部分内容,需要考虑两个问题:一、这些多项式的系数如何求?二、即使求出了这些多项式的系数,如何去评估这个多项式逼近连续函数的精确程度,即还需要求出误差(余项),当余项随着项数
12、的增多趋向于零时,这种近似的精确度就是足够好的下册(一):多元函数的微积分:将上册的一元函数微积分的概念拓展到多元函数最典型的是二元函数极限:二元函数与一元函数要注意的区别,二元函数中两点无限接近的方式有无限多种(一元函数只能沿直线接近),所以二元函数存在的要求更高,即自变量无论以任何方式接近于一定点,函数值都要有确定的变化趋势连续:二元函数和一元函数一样,同样是考虑在某点的极限和在某点的函数值是否相等导数:上册中已经说过,导数反映的是函数在某点处的变化率(变化情况),在二元函数中,一点处函数的变化情况与从该点出发所选择的方向有关,有可能沿不同方向会有不同的变化率,这样引出方向导数的概念沿坐标
13、轴方向的导数若存在,称之为偏导数通过研究发现,方向导数与偏导数存在一定关系,可用偏导数和所选定的方向来表示,即二元函数的两个偏导数已经足够表示清楚该函数在一点沿任意方向的变化情况高阶偏导数若连续,则求导次序可交换微分:微分是函数增量的线性主要部分,这一本质对一元函数或多元函数来说都一样。只不过若是二元函数,所选取的线性近似部分应该是两个方向自变量增量的线性组合,然后再考虑误差是否是自变量增量的高阶无穷小,若是,则微分存在仅仅有偏导数存在,不能推出用线性关系近似表示函数增量后带来的误差足够小,即偏导数存在不一定有微分存在若偏导数存在,且连续,则微分一定存在极限、连续、偏导数和可微的关系在多元函数
14、情形里比一元函数更为复杂极值:若函数在一点取极值,且在该点导数(偏导数)存在,则此导数(偏导数)必为零所以,函数在某点的极值情况,即函数在该点附近的函数增量的符号,由二阶微分的符号判断。对一元函数来说,二阶微分的符号就是二阶导数的符号,对二元函数来说,二阶微分的符号可由相应的二次型的正定或负定性判断。梯度运算把一个标量场变成向量场一条空间曲线在某点的切向量,便是该点处的曲线微元向量,有三个分量,它建立了第一类曲线积分与第二类曲线积分的联系一张空间曲面在某点的法向量,便是该点处的曲面微元向量,有三个分量,它建立了第一类曲面积分和第二类曲面积分的联系物体在一点处的相对体积变化率由该点处的速度场决定
15、,其值为速度场的散度散度运算把向量场变成标量场散度为零的场称为无源场高斯定理的物理意义:对散度在空间区域进行体积分,结果应该是这个空间区域的体积变化率,同时这种体积变化也可看成是在边界上的流量造成的,故两者应该相等。即高斯定理把一个速度场在边界上的积分与速度场的散度在该边界所围的闭区域上的体积分联系起来无源场的体积变化为零,这是容易理解的,相当于既无损失又无补充物体在一点处的旋转情况由该点处的速度场决定,其值为速度场的旋度旋度运算把向量场变成向量场旋度为零的场称为无旋场斯托克斯定理的物理意义:对旋度在空间曲面进行第二类曲面积分,结果应该表示的是这个曲面的旋转快慢程度,同时这种旋转也可看成是边界
16、上的速度环量造成的,故两者应该相等。即斯托克斯定理把一个速度场在边界上形成的环量与该边界所围的曲面的第二类曲面积分联系起来。该解释是从速度环量的角度出发得到的,比高斯定理要难,不强求掌握。无旋场的速度环量为零,这相当于一个区域没有旋转效应,这是容易理解的格林定理是斯托克斯定理的平面情形进一步考察无旋场的性质旋度为零,相当于对旋度作的第二类曲面积分为零即等号后边的第二类曲线积分为零,相当于该力场围绕一闭合空间曲线作做的功为零即从该闭合曲线上任选一点出发,积分与路径无关相当于所得到的曲线积分结果只于终点的选择有关,与路径无关,可看成终点的函数,这是一个场函数(空间位置的函数),称为势函数所得的势函
17、数的梯度正好就是原来的力场因为力场函数是连续的,所以势函数有全微分总习题二:1填空题,不多说了,重点2非常好的一道题目,考察了与导数有关的一些说法,其中的干扰项(B)(C)设置的比较巧妙,因为平时我们一般只注意到导数在某点存在的条件是左右导数都存在且相等,容易忽视另一个重要条件:函数必须要在该点连续,否则何来可导?而(B)(C)项的问题正是在于即使其中的极限存在,也不能保证函数在该点连续,因为根本就没出现f(a),所以对f(x)在a处的情况是不清楚的。而对(A)项来说只能保证右导数存在。只有(D)项是能确实的推出可导的3物理应用现在基本不要求了4按定义求导数,不难,应该掌握5常见题型,判断函数
18、在间断点处的导数情况,按定义即可6典型题,讨论函数在间断点处的连续性和可导性,均按定义即可7求函数的导数,计算层面的考察,第二章学习的主要内容8求二阶导数,同上题9求高阶导数,需注意总结规律,难度稍大,体会思路即可10求隐函数的导数,重要,常考题型11求参数方程的导数,同样是常考题型12导数的几何应用,重要题型13、14、15不作要求综上,第二章总习题需重点掌握的题目是1、2、4、5、6、7、8、10、11、12第三章的习题都比较难,需要多总结和体会解题思路总习题三1零点个数的讨论问题,典型题,需掌握2又一道设置巧妙的题目,解决方法有很多,通过二阶导的符号来判断函数增量与导数、微分的大小关系,
19、07年真题就有一道题目由此题改造而来,需重点体会3举反例,随便找个有跳跃点的函数即可4中值定理和极限的综合应用,重要题目,主要从中体会中值定理的妙处5零点问题,可用反证法结合罗尔定理,也可正面推证,确定出函数的单调区间即可,此题非典型题6、7、8中值定理典型题,要证明存在零点,可构造适当的辅助函数,再利用罗尔定理,此类题非常重要,要细心体会解答给出的方法9非常见题型,了解即可10罗必达法则应用,重要题型,重点掌握11不等式,一般可用导数推征,典型题12、13极值及最值问题,需要掌握,不过相对来说多元函数的这类问题更重要些14、15、16不作要求17非常重要的一道题目,设计的很好,需要注意题目条
20、件中并未给出f可导,故不能连用两次洛必达法则,只能用一次洛必达法则再用定义,这是此题的亮点18无穷小的阶的比较,一是可直接按定义,二是可将函数泰勒展开,都能得到结果,此题考察的是如何判断两个量的阶的大小,重要19对凹凸性定义的推广,用泰勒公式展开到二阶可较方便的解决,此题可看作泰勒公式应用的一个实例,重在体会其思想20确定合适的常数,使得函数为给定的无穷小量,典型题,且难度不大综上,第三章总习题需要重点掌握的是1、2、4、6、7、8、10、11、12、13、17、18、20第四章没有什么可说的重点,能做多少是多少吧积分的题目是做不完的。当然,如果你以那种不破楼兰终不还的决心和气势,最终把所有题
21、目搞定了,这还是值得恭喜的,尽管可能这会花掉很多时间,但仍然是值得的因为这有效的锻炼了思维。总习题五1填空,重要,但第(2)、(3)问涉及广义积分,不作要求2典型题,前3题用定积分定义求极限,需重点掌握,尤其是要体会如何把和式改写为相应的积分式,积分区间和被积函数如何定,这个是需要适当的练习才能把握好的,后2题涉及积分上限函数求导,也是常见题型3分别列出三种积分计算中最可能出现的错误,需细心体会,重要4利用定积分的估值证明不等式,技巧性较强5两个著名不等式的积分形式,不作强制要求,了解即可6此题证明要用5题中的柯西不等式,不作要求7计算定积分,典型题8证明两个积分相等,可用一般方法,也可利用二
22、重积分的交换积分次序,设计巧妙的重点题目9同样是利用导数证明不等式,只不过对象变得比一般函数复杂,是积分上限函数,但本质和第三章的类似题目无区别,不难掌握10分段求积分,典型题11证明积分第一中值定理,要用到连续函数的介值定理,难度高于积分中值定理的证明,可作为提高和锻炼性质的练习综上,总习题五需要重点掌握的题目是1、2、3、7、8、9、10定积分的应用一块的考察,现在更偏重的是几何应用1物理应用,跳过2所涉及到的图形较为复杂,是两个圆,其中第二个是旋转了一定角度的圆,不易看出,此题可作为一个提高性质的练习3重点题,积分的几何应用和极值问题相结合,常考题型之一4旋转体体积,需注意的是绕哪条线形
23、成的旋转体,所绕的轴不同的话,结果不同9从流量的角度出发理解第二类曲面积分,基本题型10用Stokes定理积分空间曲线积分,基本题型,01年考过综上,总习题十需要重点掌握的题目是1、2、3、4、5、8、9、10第十一章是级数,数二数四不要求,其中傅立叶级数对数三无要求总习题十一1填空,涉及级数敛散性的相关说法,重要2判断正项级数的收敛性,典型题,综合应用比较、比值、根值三种方法,在用比较判别法时实际就是比较两个通项是否同阶无穷小,这样可让思路更清晰3抽象级数的概念题,重点题型之一,要利用级数收敛的相关性质判断4设置了陷阱的概念题,因为比较判别法只对正项级数成立,也是重点题型之一5判断级数的绝对
24、收敛和条件收敛,典型题,通过这些练习来加强对这类题目的熟练度6利用收敛级数的通项趋于零这一说法来判断极限,体会方法即可7求幂级数的收敛域,典型题,要多加练习,注意搞清楚收敛域、收敛半径、收敛区域的区别8求幂级数的和函数,典型题,重要,一般求和函数都不用直接法而用间接法,即通过对通项作变形(逐项积分或求导等),再利用已知的常见函数的展开式得到结果,注意求出和函数不要忘记相应的收敛域。9利用构造幂级数来求数项级数的和,也是一类重要题型10将函数展开为幂级数,与8是互为反问题,仍是多用间接展开法,方法上异曲同工,需要熟练掌握,同样注意不要忘记收敛域11、12傅立叶级数的相关题目,基本题,此类题目记得
25、相应的系数表达式就可解决,一般来说至少要掌握周期为pi的情形。注意傅氏级数展开的系数公式难记,只能平时多加回顾,还有不要忽略了在非连续点展开后的傅氏级数的收敛情况(即狄利赫莱收敛定理)综上,总习题十一需要重点掌握的题目是1、2、3、4、5、7、8、9、10、11第十二章微分方程,二阶以上的方程对数四不作要求,下面不再详细说明总习题十二1填空,涉及微分方程理论的若干说法,基本题,第(2)问只数一要求2通过解的形式观察出相应的微分方程,典型题,其中第(2)问更重要3、4求解不同类型的微分方程,通过这些题目的练习,基本对各种方程的解法有一定了解,同时也培养了一些解题思路和技巧,重要。其中涉及到全微分方程的几个小题只数一有要求5微分方程的几何应用,基本题6微分方程的物理应用,不作要求7由积分方程推导微分方程,典型题,要求掌握8用变量代换化简微分方程,典型题,只对数一有要求,注意在代换过程中要搞清楚变量和变量的对应关系9涉及微分方程基本理论的题目,非常见题型,但可体会其出题思路10欧拉方程的练习,数一要求第 14 页 共 14 页