《高中物理光学知识点经典总结.doc》由会员分享,可在线阅读,更多相关《高中物理光学知识点经典总结.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高中物理光学知识点经典总结高中物理光学知识点经典总结光的反射光的折射几何光学全反射光的色散入射角等于反射角光路是可逆的光的频率(颜色)由光源决定,与介质无关siniCsin90o空nsinv介sinC介光从一种介质进入另一种由水面上看水下光源时,视深dd/n介质,频率不变由水面下看水上物体时,视高dnd条件:1.光密到光疏;2.入射角等于或大于临界角sinc=1(C为临界角)n光的色散颜色n红紫小大光导纤维全反射棱镜光的干涉光波动光学光的衍射光的偏振学光的本性电磁波粒子性光密三棱镜:光线向底面偏折光疏三棱镜:光线向顶角偏折亮条纹=klx暗条纹=双缝干涉(2n1)d2薄膜干涉单缝衍射小孔衍射小球
2、衍射光是一种横波麦克斯韦提出光在本质上是一种电磁波光电效应无线电波X射线f小大V大小C临E光子大小大小小大肥皂膜、空气膜、油膜、牛顿环、光学器件增透膜、冷光灯结构示意图,E为灯丝电源。在K、A两电极间加上几万伏的直流高压,使射线管发出X射线红外线可见光紫外线X射线射线原子核受激发产生振荡电路中自由原子外层电子受到激发原子内层电子受激电子周期性运动产生发产生的赫兹用实验证明了光的电磁说的正确性Vf产生一切物体高温物体主要性质热效应化学效应电子衍射现象光波和物质波是概率波应用举例遥感、遥控、加热荧光、杀菌透视、金属探伤光的波粒二象性E=hv波动性种类康普顿效应石墨中的电子对x射线的散射现象红外线h
3、v=Em-En紫外线原子跃迁时辐射或吸收的光子能量干涉、衍射、多普勒效应、偏振都是波的特有现象X射线EKhvW阴极射线射到固体表面强穿透性物质波概率波光谱德布罗意波任何运动物体都有与之对应的波长物质波:=h/p光子在空间位置出现的概率以及运动的微观粒子在某点附近出现的概率由波动规律确定连续光谱:炽热固液高压气体发光发射光谱明线光谱:稀薄气体或金属蒸气吸收光谱:光通过物质被吸收一部分形成的扩展阅读:高中物理光学知识点总结光学知识点光的直线传播光的反射一、光源1定义:能够自行发光的物体2特点:光源具有能量且能将其它形式的能量转化为光能,光在介质中传播就是能量的传播二、光的直线传播1光在同一种均匀透
4、明的介质中沿直线传播,各种频率的光在真空中传播速度:C3108m/s;各种频率的光在介质中的传播速度均小于在真空中的传播速度,即v3临界角公式:光线从某种介质射向真空(或空气)时的临界角为C,则sinC=1/n=v/c四、棱镜与光的色散1.棱镜对光的偏折作用一般所说的棱镜都是用光密介质制作的。入射光线经三棱镜两次折射后,射出方向与入射方向相比,向底边偏折。(若棱镜的折射率比棱镜外介质小则结论相反。)作图时尽量利用对称性(把棱镜中的光线画成与底边平行)。由于各种色光的折射率不同,因此一束白光经三棱镜折射后发生色散现象,在光屏上形成七色光带(称光谱)(红光偏折最小,紫光偏折最大。)在同一介质中,七
5、色光与下面几个物理量的对应关系如表所示。光学中的一个现象一串结论色散现象(波动性)衍射C临干涉间(粒子性)E光子光电效应nv距红小大大(明显)容易小大小(不明显)小难黄紫大小小(不明显)难大小大(明显)大易结论:(1)折射率n、;(2)全反射的临界角C;(3)同一介质中的传播速率v;(4)在平行玻璃块的侧移x(5)光的频率,频率大,粒子性明显.;(6)光子的能量E=h则光子的能量越大。越容易产生光电效应现象(7)在真空中光的波长,波长大波动性显著;(8)在相同的情况下,双缝干涉条纹间距x越来越窄(9)在相同的情况下,衍射现象越来越不明显2.全反射棱镜横截面是等腰直角三角形的棱镜叫全反射棱镜。选
6、择适当的入射点,可以使入射光线经过全反射棱oo镜的作用在射出后偏转90(右图1)或180(右图2)。要特别注意两种用法中光线在哪个表面发生全反射。3.玻璃砖所谓玻璃砖一般指横截面为矩形的棱柱。当光线从上表面入射,从下表面射出时,其特点是:射出光线和入射光线平行;各种色光在第一次入射后就发生色散;射出光线的侧移和折射率、入射角、玻璃砖的厚度有关;可利用玻璃砖测定玻璃的折射率。4.光导纤维全反射的一个重要应用就是用于光导纤维(简称光纤)。光纤有内、外两层材料,其中内层是光密介质,外层是光疏介质。光在光纤中传播时,每次射到内、外两层材料的界面,都要求入射角大于临界角,从而发生全反射。这样使从一个端面
7、入射的光,经过多次全反射能够没有损失地全部从另一个端面射出。五、各光学元件对光路的控制特征(1)光束经平面镜反射后,其会聚(或发散)的程度将不发生改变。这正是反射定律中“反射角等于入射角”及平面镜的反射面是“平面”所共同决定的。(2)光束射向三棱镜,经前、后表面两次折射后,其传播光路变化的特征是:向着底边偏折,若光束由复色光组成,由于不同色光偏折的程度不同,将发生所谓的色散现象。(3)光束射向前、后表面平行的透明玻璃砖,经前、后表面两次折射后,其传播光路变化的特征是;传播方向不变,只产生一个侧移。(4)光束射向透镜,经前、后表面两次折射后,其传播光路变化的特征是:凸透镜使光束会聚,凹透镜使光束
8、发散。六、各光学镜的成像特征物点发出的发散光束照射到镜面上并经反射或折射后,如会聚于一点,则该点即为物点经镜面所成的实像点;如发散,则其反向延长后的会聚点即为物点经镜面所成的虚像点。因此,判断某光学镜是否能成实(虚)像,关键看发散光束经该光学镜的反射或折射后是否能变为会聚光束(可能仍为发散光束)。(1)平面镜的反射不能改变物点发出的发散光束的发散程度,所以只能在异侧成等等大的、正立的虚像。(2)凹透镜的折射只能使物点发出的发散光束的发散程度提高,所以只能在同侧成缩小的、正立的虚像。(3)凸透镜折射既能使物点发出的发散光束仍然发散,又能使物点发出发散光束变为聚光束,所以它既能成虚像,又能成实像。
9、七、几何光学中的光路问题几何光学是借用“几何”知识来研究光的传播问题的,而光的传播路线又是由光的基本传播规律来确定。所以,对于几何光学问题,只要能够画出光路图,剩下的就只是“几何问题”了。而几何光学中的光路通常有如下两类:(1)“成像光路”一般来说画光路应依据光的传播规律,但对成像光路来说,特别是对薄透镜的成像光路来说,则是依据三条特殊光线来完成的。这三条特殊光线通常是指:平行于主轴的光线经透镜后必过焦点;过焦点的光线经透镜后必平行于主轴;过光心的光线经透镜后传播方向不变。(2)“视场光路”即用光路来确定观察范围。这类光路一般要求画出所谓的“边缘光线”,而一般的“边缘光线”往往又要借助于物点与
10、像点的一一对应关系来帮助确定。光的波动性(光的本性)一、光的干涉一、光的干涉现象两列波在相遇的叠加区域,某些区域使得“振动”加强,出现亮条纹;某些区域使得振动减弱,出现暗条纹。振动加强和振动减弱的区域相互间隔,出现明暗相间条纹的现象。这种现象叫光的干涉现象。二、产生稳定干涉的条件:两列波频率相同,振动步调一致(振动方向相同),相差恒定。两个振动情况总是相同的波源,即相干波源1.产生相干光源的方法(必须保证相同)。利用激光(因为激光发出的是单色性极好的光);分光法(一分为二):将一束光分为两束频率和振动情况完全相同的光。(这样两束光都来源于同一个光源,频率必然相等)下面4个图分别是利用双缝、利用
11、楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图点(或缝)光源分割法:杨氏双缝(双孔)干涉实验;利用反射得到相干光源:薄膜干涉a利用折射得到相干光源:cSS1SSS/22双缝干涉的定量分析如图所示,缝屏间距L远大于双缝间距d,O点与双缝S1和S2等间距,则当双缝中发出光同时射到O点附近的P点时,两束光b波的路程差为=r2r1;由几何关系得:r12=L2+(x考虑到Ld和Lx,可得=d2)2,r22=L2+(x+d2)2.dxL亮纹:则当=k(k=0,1,2,)屏上某点到双缝的光程差等于波长的整数倍时,两束光叠加干涉加强;暗纹:当=(2k1).若光波长为,2(k=0,1,2,)屏上某点到双缝
12、的光程差等于半波长的奇数倍时,两束光叠加干涉减弱,据此不难推算出:(1)明纹坐标x=kLd(k=0,1,2,)(2)暗纹坐标x=(2k1)Ld2(k=1,2,)测量光波长的方法(3)条纹间距相邻亮纹(暗纹)间的距离x=Ld.(缝屏间距L,双缝间距d)an1用此公式可以测定单色光的波长。则出n条亮条纹(暗)条纹的距离a,相邻两条亮条纹间距dLxdL(an1)用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。结论:由同一光源发出的光经两狭缝后形成两列光波叠加产生当这两列光波到达某点的路程差为波长的整数倍时,即=k,该处的光互相加强,出
13、现亮条纹;当到达某点的路程差为半波长奇数倍时,既=条纹间距与单色光波长成正比x2(2n1),该点光互相消弱,出现暗条纹;ld所以用单色光作双缝干涉实验时,屏的中央是亮纹,两边对称地排列明暗相同且间距相等的条纹用白光作双缝干涉实验时,屏的中央是白色亮纹,两边对称地排列彩色条纹,离中央白色亮纹最近的是紫色亮纹。原因:不同色光产生的条纹间距不同,出现各色条纹交错现象。所以出现彩色条纹。将其中一条缝遮住:将出现明暗相间的亮度不同且不等距的衍射条纹3薄膜干涉现象:光照到薄膜上,由薄膜前、后表面反射的两列光波叠加而成劈形薄膜干涉可产生平行相间条纹,两列反射波的路程差,等于薄膜厚度d的两倍,即=2d。由于膜
14、上各处厚度不同,故各处两列反射波的路程差不等。若:=2d=n(n=1,2)则出现明纹。=2d=(2n-1)/2(n=1,2)则出现暗纹。应注意:干涉条纹出现在被照射面(即前表面)。后表面是光的折射所造成的色散现象。单色光明暗相间条纹,彩色光出现彩色条纹。薄膜干涉应用:肥皂膜干涉、两片玻璃间的空气膜干涉、浮在水面上的油膜干涉、牛顿环、蝴蝶翅膀的颜色等。光照到薄膜上,由膜的前后表面反射的两列光叠加。看到膜上出现明暗相间的条纹。(1)透镜增透膜(氟化镁):透镜增透膜的厚度应是透射光在薄膜中波长的14倍。使薄膜前后两面的反射光的光程差为半个波长,(T=2d=,得d=),故反射光叠加后减弱。大大减少了光
15、的反射损失,增强了透射光的强度,这种薄膜叫增透膜。光谱中央部分的绿光对人的视觉最敏感,通过时完全抵消,边缘的红、紫光没有显著削弱。所有增透膜的光学镜头呈现淡紫色。从能量的角度分析E入=E反+E透+E吸。在介质膜吸收能量不变的前提下,若E反=0,则E透最大。增强透射光的强度。(2)“用干涉法检查平面”:如图所示,两板之间形成一层空气膜,用单色光从上向下照射,如果被检测平面是光滑的,得到的干涉图样必是等间距的。如果某处凸起来,则对应明纹(或暗纹)提前出现,如图甲所示;如果某处凹下,则对应条纹延后出现,如图乙所示。(注:“提前”与“延后”不是指在时间上,而是指由左向右的顺序位置上。)注意:由于发光物
16、质的特殊性,任何独立的两列光叠加均不能产生干涉现象。只有采用特殊方法从同一光源分离出的两列光叠加才(),能产生干涉现象。4光的波长、波速和频率的关系vf。光在不同介质中传播时,其频率f不变,其波长与光在介质中的波速v成正比色光的颜色由频率决定,频率不变则色光的颜色也不变。二、光的衍射。1.光的衍射现象是光离开直线路径而绕到障碍物阴影里的现象单缝衍射:中央明而亮的条纹,两侧对称排列强度减弱,间距变窄的条纹。圆孔衍射:明暗相间不等距的圆环,(与牛顿环有区别的)2.泊松亮斑:当光照到不透光的极小圆板上时,在圆板的阴影中心出现的亮斑。当形成泊松亮斑时,圆板阴影的边缘是模糊的,在阴影外还有不等间距的明暗
17、相间的圆环。3.各种不同形状的障碍物都能使光发生衍射。至使轮廓模糊不清,4.产生明显衍射的条件:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm时,有明显衍射现象)d300当d=0.1mm=1300时看到的衍射现象就很明显了。小结:光的干涉条纹和衍射条纹都是光波叠加的结果,但存在明显的区别:单色光的衍射条纹与干涉条纹都是明暗相间分布,但衍射条纹中间亮纹最宽,两侧条纹逐渐变窄变暗,干涉条纹则是等间距,明暗亮度相同。白光的衍射条纹与干涉条纹都是彩色的。意义:干涉和衍射现象是波的特征:证明光具有波动性。大,干涉和衍射现明显,越容易观察到现象。衍射现象表明光沿直线
18、传播只是近似规律,当光波长比障碍物小得多和情况下(条件)光才可以看作直线传播。(反之)在发生明显衍射的条件下,当窄缝变窄时,亮斑的范围变大,条纹间距离变大,而亮度变暗。光的直进是几何光学的基础,光的衍射现象并没有完全否认光的直进,而是指出光的传播规律受一定条件制约的,任何物理规律都受一定条件限制。(光学显微镜能放大2022倍,无法再放大,再放大衍射现象明显了。)光振动垂(以下新教材适用)直于纸面三.光的偏振横波只沿某个特定方向振动,这种现象叫做波的偏振。只有横波才有偏振现象。根据波是否具有偏振现象来判断波是否横波,实验表明,光具有偏振现象,说明光波是横波。(1)自然光。太阳、电灯等普通光源直接
19、发出的光,包含垂直于传播方向上沿一切方向振动的光,光振动而且沿各个方向振动的光波的强度都相同,这种光叫自然光。自然光通过偏振片后成形偏振光。在纸面(2)偏振光。自然光通过偏振片后,在垂直于传播方向的平面上,只沿一个特定的方向振动,叫偏振光。自然光射到两种介质的界面上,如果光的入射方向合适,使反射和折射光之间的夹角恰好是90,这时,反射光和折射光就都是偏振光,且它们的偏振方向互相垂直。我们通常看到的绝大多数光都是偏振光。除了直接从光源发出的光外。偏振片(起偏器)由特定的材料制成,它上面有一个特殊方向(透振方向)只有振动方向和透振方向平行的光波才能通过偏振片。(3)只有横波才有偏振现象。光的偏振也
20、证明了光是一种波,而且是横波。各种电磁波中电场E的方向、磁场B的方向和电磁波的传播方向之间,两两互相垂直。(4)光波的感光作用和生理作用主要是由电场强度E引起的,因此将E的振动称为光振动。(5)应用:立体电影、照相机的镜头、消除车灯的眩光等。四、麦克斯韦光的电磁说1、光的干涉与衍射充分地表明光是一种波,光的偏振现象又进一步表明光是横波。提出光电磁说的背景:麦克斯韦对电磁理论的研究预言了电磁波的存在,并得到电磁波传播速度的理论值3.11108m/s,这和当时测出的光速3.15108m/s非常接近,在此基础上麦克斯韦提出了光在本质上是一种电磁波这就是所谓的光的电磁说。光电磁说的依据:赫兹在电磁说提
21、出20多年后,用实验证实了电磁波的存在,测得电磁波的传播速度确实等于光速,并测出其波长与频率,并且证明了电磁波也能产生反射、折射、衍射、干涉、偏振等现象。用实验证实了光的电磁说的正确性。光电磁说的意义:揭示了光的电磁本性,光是一定频率范围内的电磁波;把光现象和电磁学统一起来,说明光与电和磁存在联系。说明了光能在真空中传播的原因:电磁场本身就是物质,不需要别的介质来传递。电磁波谱:按波长由大到小的顺序排列为:无线电波、红外线、可见光(七色)、紫外线、X射级、射线,除可见光外,相邻波段间都有重叠。各种电磁波产生的基理、性质差别、用途。电磁波种类无线电波红外线可见光紫外线伦琴射线射线频率(Hz)10
22、43101210123.910143.910147.510147.5101451016310163102031019以上真空中波长(m)组成频率波观察方法各种电磁波的产生机理3101410431047.7107.71074410761079107波长:大小波动性:明显不明显频率:小大粒子性:不明显明显无线电技术利用热效应激发荧光利用贯穿本领照相底片感光(化学效应)LC电路中自由原子的外层电子受到激发电子的的振荡10810121011以下核技术原子的内层电子受到激发原子核受到激发特性用途波动性强通讯,广播,导航热效应加热烘干、遥测遥感,医疗,导向等引起视觉照明,照相,加热化学作用、荧光效应、杀菌
23、日光灯,黑光灯手术室杀菌消毒,治疗皮肤病等贯穿作用强贯穿本领最强检查探测,透视,探测,治疗等治疗等从无线电波到射线,都是本质上相同的电磁波,它们的行服从同的波动规律。由于频率和波长不同,又表现出不同的特性:波长大(频率小)干涉、衍射明显,波动性强。现在能在晶体上观察到射线的衍射图样了。除了可同光外,上述相邻的电磁波的频率并不绝对分开,但频率、波长的排列有规律。(3)红外线、紫外线、X射线的性质及应用。种类产生主要性质应用举例红外线一切物体都能发出热效应遥感、遥控、加热紫外线一切高温物体能发出化学效应荧光、杀菌、合成VD2X射线阴极射线射到固体表面穿透能力强人体透视、金属探伤实验证明:物体辐射出
24、的电磁波中辐射最强的波长m和物体温度T之间满足关系mT=b(b为常数)。可见高温物体辐射出的电磁波频率较高。在宇宙学中,可以根据接收到的恒星发出的光的频率,分析其表面温度。可见光:频率范围是3.9-7.51014Hz,波长范围是400-770nm。五、光谱和光谱分析(可用光谱管和分光镜观察)由色散形成的,按频率的顺序排列而成的彩色光带叫做光谱1发射光谱(1)连续光谱:包含一切波长的光,由炽热的固体、液体及高压气体发光产生;(2)明线光谱:又叫原子光谱,只含原子的特征谱线由稀薄气体或金属蒸气发光产生。2吸收光谱:连续光通过某一物质被吸收一部分光后形成的光谱,能反映出原子的特征谱线每种元素都有自己
25、的特征谱线,根据不同的特征谱线可确定物质的化学组成,光谱分析既可用明线光谱,也可用吸收光谱六.激光的主要特点及应用(1)激光是人工产生的相干光,可应用于光纤通信。(普通光源发出的光是混合光,激光频率单一,相干性能好非常好,颜色特别纯。)(2)平行度和方向性非常好。(应用于激光测距雷达,可精确测距(s=ct/2)、测速、目标跟踪、激光光盘、激光致热切割、激光核骤变等。)(3)亮度高、能量大,应用于切割各种物质、打孔和焊接金属。医学上用激光作“光刀”来做外科手术。七注意问题1知道反映光具有波动性的实验及有关理论2光的干涉只要求定性掌握,要能区分光的干涉和衍射现象:凡是光通单孔、单缝或多孔多缝所产生的现象都属于衍射现象,只有通过双孔、双缝、双面所产生的现象才属于干涉现象;干涉条纹和衍射条纹虽然都是根据波的叠加原理产生的,但两种条纹有如下区别(以明暗相同的条纹为例):干涉纹间距相等,亮条纹亮度相同衍射条纹,中央具有宽而明亮的亮条纹,两侧对称地排列着一系列强度较弱较窄的亮条纹第 14 页 共 14 页