《人教版七年级数学下册期末复习知识点.pdf》由会员分享,可在线阅读,更多相关《人教版七年级数学下册期末复习知识点.pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人人 教教 版版 七七 年年 级级 数数 学学 下下 册册 期期 末末 复复 习习 知知 识识 点点第五章第五章相交线与平行线相交线与平行线一、知识网络结构一、知识网络结构相交线相交线垂线同位角、内错角、同旁内角平行线:在同一平面内,不相交的两条直线叫平行线_定义 : _平行线及其判定判定1:同位角相等,两直线平行平行线的判定判定2:内错角相等,两直线平行判定3:同旁内角互补,两直线平行相交线与平行线判定4:平行于同一条直线 的两直线平行性质1:两直线平行,同位角相等性质2:两直线平行,内错角相等平行线的性质性质3:两直线平行,同旁内角互补性质4:平行于同一条直线 的两直线平行命题、定理平移二
2、、知识要点二、知识要点1、在同一平面内, 两条直线的位置关系有 两两 种: 相交相交 和 平行平行 ,垂直垂直是相交的一种特殊情况。2、在同一平面内,不相交的两条直线叫 平行线平行线 。如果两条直线只有 一个一个 公共点,称这两条直线相交;如果两条直线 没有没有 公共点,称这两条直线平行。3、两条直线相交所构成的四个角中,有 公共顶点公共顶点 且有 一条公共边一条公共边 的两个角是邻补角。邻补角的性质: 邻补角互补邻补角互补 。如图 1 所示,与互为邻补角,2134图图 1 1与互为邻补角。 + = 180; + = 180; + = 180; + = 180。4、两条直线相交所构成的四个角中
3、,一个角的两边分别是另一个角的两边的 反向延长线反向延长线 ,这样的两个角互为 对顶角对顶角 。对顶角的性质:对顶角相等。如图 1 所示,与互为对顶角。=; =。5、两条直线相交所成的角中,如果有一个是 直角或直角或 9090时,称这两条直线互相垂直,其中一条叫做另一条的垂线。如图2 所示,当= = 90时,。b ba a垂线的性质:垂线的性质:性质性质 1 1:过一点有且只有一条直线与已知直线垂直。2134图图 2 2性质性质 2 2:连接直线外一点与直线上各点的所有线段中,垂线段最短。性质性质 3 3:如图 2 所示,当 a ab b 时,= = = = = 90。点到直线的距离点到直线的
4、距离:直线外一点到这条直线的垂线段的长度垂线段的长度叫点到直线的距离。6、同位角、内错角、同旁内角基本特征:c ca a2341b b在两条直线(被截线)的 同一方同一方 ,都在第三条直线(截线)的 同一侧同一侧 ,这样的两个角叫 同位角同位角 。图 3 中,共有对同位角:与是同位角;与是同位角;与是同位角;与是同位角。6758图图 3 3在两条直线(被截线) 之间之间 ,并且在第三条直线(截线)的 两侧两侧 ,这样的两个角叫 内错角内错角 。图 3中,共有对内错角:与是内错角;与是内错角。在两条直线(被截线)的 之间之间 ,都在第三条直线(截线)的 同一旁同一旁 ,这样的两个角叫 同旁内角同
5、旁内角 。图 3 中,共有对同旁内角:与是同旁内角;与是同旁内角。7、平行公理平行公理:经过直线外一点有且只有一条直线与已知直线平行。平行公理的推论平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。平行线的性质平行线的性质:性质性质 1 1:两直线平行,同位角相等。如图4 所示,如果 ab,则 =; =; =; =。c ca a2314b b图图 4 46785性质性质 2 2:两直线平行,内错角相等。如图4 所示,如果 ab,则 =; =。性质性质 3 3:两直线平行,同旁内角互补。如图4 所示,如果 ab,则 + = 180; + = 180。性质性质 4 4:平行
6、于同一条直线的两条直线互相平行。如果ab,ac,则。8、平行线的判定平行线的判定:c c2314b b图图 5 56758判定判定 1 1:同位角相等,两直线平行。如图5 所示,如果 =a a或 =或 =或 =,则 ab。判定判定 2 2:内错角相等,两直线平行。如图5 所示,如果 =或 =,则 ab 。判定判定 3 3:同旁内角互补,两直线平行。如图5 所示,如果 + = 180; + = 180,则 ab。判定判定 4 4:平行于同一条直线的两条直线互相平行。如果ab,ac,则。9、判断一件事情的语句叫命题命题。命题由 题设题设 和 结论结论 两部分组成,有 真命题真命题 和 假命题假命题
7、 之分。如果题设成立, 那么结论 一定一定 成立, 这样的命题叫 真命题真命题 ; 如果题设成立, 那么结论 不一定不一定 成立,这样的命题叫假命题假命题。真命题的正确性是经过推理证实的,这样的真命题叫 定理定理,它可以作为继续推理的依据。10、平移:平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。平移后,新图形与原图形的 形状形状 和 大小大小 完全相同。平移后得到的新图形中每一点, 都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。第六章第六章实数实数【知识点一】实数的分类 1、按定义分类: 2.按性质符号分类:注:0 既不是正数也不是负
8、数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数0 的相反数是 0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b 互为相反数 a+b=0.2.绝对值|a|03.倒数 (1)0 没有倒数 (2)乘积是 1 的两个数互为倒数a、b 互为倒数 .平方根【知识要点】平方根【知识要点】1.算术平方根:正数 a 的正的平方根叫做 a 的算术平方根,记作“a” 。2. 如果 x2=a,则 x 叫做 a 的平方根,记作“
9、a” (a 称为被开方数) 。3. 正数的平方根有两个,它们互为相反数;0 的平方根是 0;负数没有平方根。4. 平方根和算术平方根的区别与联系:区别区别:正数的平方根有两个,而它的算术平方根只有一个。联系联系: (1)被开方数必须都为非负数; (2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。 (3)0 的算术平方根与平方根同为0。5. 如果 x3=a,则 x 叫做a的立方根,记作“a” (a称为被开方数) 。6. 正数有一个正的立方根;0 的立方根是 0;负数有一个负的立方根。7. 求一个数的平方根(立方根)的运算叫开平方(开立方) 。8. 立方根与
10、平方根的区别:立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0 有平方根,负数没有平方根,正数的平方根有 2 个,并且互为相反数,0 的平方根只有一个且为0.9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如325 5, 2500 50.10.平方表: (自行完成)1 =2 =3 =4 =5 =2222222222222222222222226 =7 =8 =9 =10 =211 =12 =13 =14 =15 =16 =17 =18 =19 =20 =21 =22 =23 =24 =25 =题型规律总结:题型规律总结:1、平方根是其本
11、身的数是0;算术平方根是其本身的数是0 和 1;立方根是其本身的数是0 和1。2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。3、a本身为非负数,有非负性,即a0;a有意义的条件是a0。4、公式:(a)2=a(a0) ;3a=3a(a取任何数) 。5、区分(a)2=a(a0),与a2=a6. .非负数的重要性质:若几个非负数之和等于 0,则每一个非负数都为 0(此性质应用很广,务必掌握)。【知识点三】实数与数轴数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可【知识点四】实数大小的比较1.对
12、于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于 0,负数都小于 0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.无理数的比较大小:【知识点五】实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加, 取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0 相加,仍得这个数2.减法:减去一个数等于加上这个数的相反数3.乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负几个数相乘,有一个因数为0,积就为 04.除法除以一个数,等于
13、乘上这个数的倒数 两个数相除,同号得正,异号得负,并把绝对值相除0除以任何一个不等于 0 的数都得 05.乘方与开方(1)an所表示的意义是 n 个 a 相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数(2)正数和 0 可以开平方,负数不能开平方;正数、负数和0 都可以开立方1(3)零指数与负指数a 1(a 0)a01a第七章第七章平面直角坐标系平面直角坐标系一、知识网络结构一、知识网络结构有序数对平面直角坐标系平面直角坐标系用坐标表示地理位置坐标方法的简单应用用坐标表示平移二、知识要点二、知识要点1、平面直角坐标系:在平面内画两条_、_的数轴,组成平面直角坐标系2、平面直角
14、坐标系中点的特点:坐标的符号特征: 第一象限,, 第二象限 () , 第三象限 () 第四象限 ()已知坐标平面内的点 A(m,n)在第四象限,那么点(n,m)在第_象限坐标轴上的点的特征:x轴上的点_为 0,y轴上的点_为 0;如果点 Pa,b在x轴上,则b _;如果点 Pa,b在y轴上,则a _如果点 Pa5,a2在y轴上,则a _,P 的坐标为()当a _时,点 Pa,1a在横轴上,P 点坐标为()如果点 Pm,n满足mn 0,那么点 P 必定在_轴上如果点 Pa,b在原点,则a _=_1、 点 Px, y到x轴的距离为_,到y轴的距离为_,到原点的距离为_;2、 点 Pa,b到x, y
15、轴的距离分别为_和_3、 点 A2,3到x轴的距离为_,到y轴的距离为_点 B7,0到x轴的距离为_,到y轴的距离为_点 P2x,5y到x轴的距离为_,到y轴的距离为_点 P 到x轴的距离为 2,到y轴的距离为 5,则 P 点的坐标为_5、平面直角坐标系中点的平移规律:左右移动点的_坐标变化, (向右移动_,向左移动 _) ,上下移动点的 _坐标变化(向上移动_,向下移动_)把点 A(4,3)向右平移两个单位,再向下平移三个单位得到的点坐标是_将点 P(4,5)先向_平移_单位,再向_平移_单位就可得到点P2,3/6、平面直角坐标系中图形平移规律: 图形中每一个点平移规律都相同: 左右移动点的
16、_坐标变化, (向右移动_,向左移动_) ,上下移动点的_坐标变化(向上移动_,向下移动_) 。已知 ABC 中任意一点P(2,2)经过平移后得到的对应点P1(3,5),原三角形三点坐标是A(2,3),B(4,2),C1,1问平移后三点坐标分别为_第八章第八章二元一次方程组二元一次方程组一、知识网络结构一、知识网络结构定义二元一次方程方程的解定义二元一次方程组方程组的解二元一次方程组代入法二元一次方程组的解法加减法二元一次方程组与实际问题三元一次方程组解法二、知识要点二、知识要点1、含有未知数的等式叫方程方程,使方程左右两边的值相等的未知数的值叫方程的解方程的解。2、方程含有两个未知数两个未知
17、数,并且含有未知数的项的次数都是次数都是 1 1,这样的方程叫二元一次方程,二元一次方程,二元一次方程的一般形式为axby c(a、b、c为常数, 并且a 0,b 0)。使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解二元一次方程的解,一个二元一次方程一般有无数无数组解。3、方程组含有两个未知数两个未知数,并且含有未知数的项的次数都是次数都是 1 1,这样的方程组叫二元一次方程组二元一次方程组。使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解二元一次方程组的解, 一个二元一次方程组一般有一个一个解。4、用代入法代入法解二元一次方程组的一般步骤:观察方程组
18、中,是否有用含一个未知数的式子表示另用含一个未知数的式子表示另一个未知数一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形, 用含一用含一个未知数的式子表示另一个未知数个未知数的式子表示另一个未知数; 再将表示出的未知数代入另一个方程中, 从而消去一个未知数,求出另一个未知数的值, 将求得的未知数的值代入原方程组中的任何一个方程, 求出另外一个未知数的值。5、用加减法加减法解二元一次方程组的一般步骤: (1)方程组的两个方程中,如果同一个未知数的系数如果同一个未知数的系数既不相等又不互为相反数,既不相等又不互为相反数, 就用适当的数去乘方程的两边, 使同一个未知数的
19、系数相等相等或互为相反互为相反数;数; (2)把两个方程的两边分别相加或相减,消去 一个未知数一个未知数; (3)解这个一元一次方程,求出一个未知数的值; (4)将求出的未知数的值代入原方程组原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。6、解三元一次方程组的一般步骤:观察方程组中未知数的系数特点,确定先消去哪个未知数;利用代入法或加减法, 把方程组中的一个方程, 与另外两个方程分别组成两组, 消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组; 解这个二元一次方程组, 求得两个未知数的值;将这两个未知数的值代入原方程组中较简单的一个方程中, 求出第三个未知
20、数的值, 从而得到原三元一次方程组的解。第九章第九章不等式与不等式组不等式与不等式组一、知识网络结构一、知识网络结构不等式不等式的解不等式相关概念不等式的解集一元一次不等式性质1不等式与不等式组不等式的性质性质2性质3不等式组一元一次不等式组一元一次不等式组的解法一元一次不等式(组)与实际问题二、知识要点二、知识要点1、用不等号不等号表示不等关系不等关系的式子叫不等式,不等号主要包括: 、 、 、 、 。2、在含有未知数的不等式中,使不等式成立的未知数的值未知数的值叫不等式的解,一个含有未知数的不等不等式的所有的解组成的集合式的所有的解组成的集合,叫这个不等式的解集。 不等式的解集可以在数轴上
21、在数轴上表示出来。求不等式的解集的过程叫解不等式解不等式。含有一个未知数一个未知数,并且所含未知数的项的次数都是未知数的项的次数都是 1 1,这样的不等式叫一元一次不等式一元一次不等式。3、不等式的性质:性质性质 1 1:不等式的两边同时加上同时加上( (或减去或减去) )同一个数同一个数( (或式子或式子) ),不等号的方向 不变不变 。用字母表示为用字母表示为:如果a b,那么ac bc;如果a b,那么ac bc;如果a b,那么ac bc;如果a b,那么ac bc。性质性质 2 2:不等式的两边同时乘以同时乘以( (或除以或除以) )同一个同一个 正数正数 ,不等号的方向 不变不变
22、。用字母表示为用字母表示为:如果a b,c 0, 那么ac bc(或如果a b,c 0, 那么ac bc(或abab如果a b,c 0, 那么ac bc(或););ccccabab如果a b,c 0, 那么ac bc(或););ccccabab如果a b,c 0, 那么ac bc(或););ccccabab如果a b,c 0, 那么ac bc(或););cccc性质性质 3 3:不等式的两边同时乘以同时乘以( (或除以或除以) )同一个同一个 负数负数 ,不等号的方向 改变改变 。用字母表示为用字母表示为:如果a b,c 0, 那么ac bc(或如果a b,c 0, 那么ac bc(或4、解一
23、元一次不等式的一般步骤: 去分母; 去括号; 移项; 合并同类项; 系数化为 1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。5、不等式组中含有一个未知数一个未知数,并且所含未知数的项的次数都是未知数的项的次数都是 1 1,这样的不等式组叫一元一次不等式组。 使不等式组中的每个不等式都成立的未知数的值未知数的值叫不等式组的解, 一个不等式组的所有不等式组的所有的解组成的集合的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上在数轴上表示出来。求不等式组的解集的过程叫解不等式组解不等式组。6、解一元一次不等式组的一般步骤:求出这个
24、不等式组中各个不等式的解集;利用数轴求出这些不等式的解集的公共部分, 得到这个不等式组的解集。 如果这些不等式的解集的没有没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )。7、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。第十章第十章数据的收集、整理与描述数据的收集、整理与描述知识要点知识要点1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。2、数据收集过程中,调查的方法通常有两种:全面调查全面调查和抽样调查抽样调查。3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体总体, 组成总体的每一个考察对象叫个体个体, 被抽取的那部分个体组成总体的一个样样本本,样本中个体的数目叫这个样本的容量 。5 、 画 频 数 直 方图 的 步骤 : 计 算数 差 ( 最大值 与 最 小 值的 差 ) ;确 定 组 距 和组 数(组距 极差极差,或 组数 ) ;列频数分布表;画频数直方图 。组数组距