《人教数学六年级上册第八单元 数学广角——数与形教案.pdf》由会员分享,可在线阅读,更多相关《人教数学六年级上册第八单元 数学广角——数与形教案.pdf(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数学广角算术与图形的转化1.在实践操作中,使学生能够感受到数与形可以互相转化,数与形相结合是数学解题思想方法。2.使学生认识到数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维。3.在研究例题的数形结合的过程中,使学生加深对数形结合思想方法的认识,充分感受数形结合在小学数学学习中的应用。1.介绍有关数学史。数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。作为一种数学思想方法,数形结合的应用大致又可分为两种情形:一是借助于数的精确性来阐明形的某些属性,二是借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数
2、解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。2.在学生的学习过程中,可以灵活地选择合适的方法,老师不要加以限制。1 课时算术与图形的转换教材第 107111 页的内容。1.使学生认识到数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维。2.使学生能够感受到数与形可以互相转化,树立数与形相结合是数学解题思想方法。3.使学生加深对数形结合思想方法的认识,充分感受数形结合在小学数学学习中的应用。1重点:感受数与形可以互相转化,树立数与形相结合是数学解题思想方法。难点:寻找和发现数
3、与形相互转化的途径与方法通过数与形的转化,认识到数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维。实物投影。投影出示。计算下面的算式1+2+3+4+5+6+7+6+5+4+3+2+1=?(1)学生读题,理解题意。(2)尝试独立完成。(3)介绍解题方法。如果有的学生能够想出来好的解题方法,就让他们说一说他们的解题思路,老师加以点拨、归纳。1.出示例 1。(1)学生读题,教师整理。为了便于观察,我们可以把图形与算式一一对应起来,找出图形和算式存在的相互关系。1+3=(1+3+5=(2)老师:先填一下算式括号。1=(1)21+3=(2)21+3+5=(4)2提问:算式左
4、边的加数有什么特点?小组内讨论,然后集体汇报。(观察后会发现:算式左边的加数是连续的奇数)提问:算式左边的加数与构成的图形之间有什么关系?小组内讨论,然后集体汇报。1=()2)2)2(仔细观察后,我们会发现:算式左边的加数是大正方形左下角的小正方形和其他“ ”形图形所包含的小正方形个数之和正好是每行或每列小正方形个数的平方)2提问:算式右边括号里的数字与构成的图形之间有什么关系?小组内讨论,然后集体汇报。(仔细观察后会发现:算式右边括号里的数字是图形构成小正方形的个数)提问:算式左边加数(除 1 图外)与右边括号里的数字之间有什么关系?算式左边的加数是1、3、5n,右边括号里的数字用a表示,那
5、么你能用字母表示其关系吗?小组内讨论,然后集体汇报。(观察计算后,我们会发现:算式左边加数和的一半等于右边括号里的数字)老师:可以举一个例子吗?学生:提问:从左到右连续相加计算,你发现了什么?小组内讨论,然后集体汇报。3老师小结:有些问题通过画图,把数字、算式转化为图形,利用图形解答,更简洁直观。3.完成教材第 108 页“做一做”。(1)学生读题,然后独立完成。(2)集体订正。观察点阵与算式的对应规律,再填空。11+41+4+41+4+4+41+4+4+4+4+4第个点阵图中有多少个点?4如图,是用棋子摆成的图案,摆第 1 个图案需要 7 枚棋子,摆第 2 个图案需要 19 枚棋子,摆第 3
6、个图案需要 37 枚棋子,按照这样的方式摆下去,则摆第 10 个图案需要多少枚棋子?6+1=76(1+2)+1=196(1+2+3)+1=37课堂作业新设计观察图形可得:第一个图形有 1 个点,可以写作 1+(1-1)4;第二个图形有 1+4 个点,可以写作 1+(2-1)4;第三个图形有 1+4+4 个点,可以写作 1+(3-1)4则第n个图形的点数就可以写作 1+(n-1)4。当n=5 时,点数为:1+(5-1)4=17(个)当n=6 时,点数为:1+(6-1)4=21(个)。思维训练第 1 个图案有 7 枚棋子;第 2 个图案有 19 枚棋子;相差 12;6 的 2 倍;第 3 个图案有
7、 37 枚棋子;相差 18;6 的 3 倍;第 4 个图案有 61 枚棋子;相差 24;6 的 4 倍;第n个图案有3n(n+1)+1 枚棋子;相差 6n;6 的n倍;那么所求摆第 10 个图案需要棋子:3n(n+1)+1=310(10+1)+1=331,即摆第 10 个图案需要 331 枚棋子。教材习题教材第 108 页做一做1. 42+3272+622. 第 6 个图形中有 6 个红色小正方形,18 个蓝色小正方形;第 10 个图形中有 10 个红色小正方形,26 个蓝色小正方形。练习二十二1. 第 5 个图形最外圈有小正方形个数为112-92=40。道理略2. 画图略第 10 个数是 5
8、5。3. 三角形个数:14916周长:36912问题:(答案不唯一)如第 10 个图的周长是多少?含有多少个小三角形?4. 2002=400(米)5. 妈妈:第二幅图;爸爸:第三幅图;小兰:第一幅图。6. 2 盘,分别和小林、小强下的。7. 关系:两边各是 1,往中间数是左右对称状,数字相同;且左右两边往中间数的第二个数,等于所在行的行数减 1;下一行的数等于上一行左右两数的和。8.*因为大正方形面积=(a+b)2,四个小图形的面积之和=a2+b2+2ab,所以(a+b)2=a2+2ab+b2。51.学生对富有情趣的古代著名数学问题很感兴趣。2.对于绝大多数没有培优的学生来说,用“数形结合”思想解题既是重点也是难点。学生已经在前面接触过“数形结合”思想,在解题时,老师要引导学生往“数形结合”思想这一方面靠拢,帮助学生突破难关。1.教学时,强调激发学生兴趣,可讲古代数学故事。2.老师适当引导,引导学生尝试用“数形结合”的思想去解题。6