《研究生医学统计学考点总结2.docx》由会员分享,可在线阅读,更多相关《研究生医学统计学考点总结2.docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品名师归纳总结基本概念:医学统计学可编辑资料 - - - 欢迎下载精品名师归纳总结1. 医学统计学 Statistics:医学统计学是以医学理论为指导,应用概率论与数 理统计的有关原理和方法, 讨论医学资料的搜集、 整理、分析和推断的一门科学。2. 同质和异质:具有相同性质的事物称为同质homogeneous。否就称为异质的或者间杂的 heterogeneous。不同质的个体不能笼统的混在一起分析,同质和 异质是相对的概念。3. 变异:同质事物之间的差别称为变异 variation,亦称个体变异。变异的两个方面:个体与个体间的差别同一个体重复测量值间的差别结果是随机的,不行猜测的。一种或多种
2、不行控因素 已知的或未知的 作用下的综合表现。个体变异是普遍存在的。 个体变异是有规律的。没有个体变异,就没有统计学。4. 总体和样本:总体population:依据讨论目的所确定的同质观看单位的全体。分为有限总体和无限总体。个体individual:是构成总体的最基本观看单位。样本sample :是从总体中依据肯定的目的随机抽取的一部分具有代表性的个体集合。样本含量 sample size:样本中包含的个体个数。5. 参数和统计量:总体参数 parameter :描述某总体特点的指标,简称参数,一般用希腊字母表示,如:、 。可编辑资料 - - - 欢迎下载精品名师归纳总结统计量 statis
3、tic:描述某样本特点的指标, 一般用拉丁Xs、p 。字母表示, 如: 、可编辑资料 - - - 欢迎下载精品名师归纳总结在总体被确定之后, 总体参数就是一个常数, 是不会变化的, 不管你是否准确知其大小。而统计量是几乎总是随着样本而变的。6. 随机random :是指机会均等,目的是保证样本对总体的代表性、牢靠性。7. 概率和频率:频率 relative frequency :在 n 次随机试验中,大事 A 发生了 m次,就比值 m/n 称为大事 A 在这 n 次试验中显现的频率。概率probability:是随机大事发生可能性大小的一个度量, 是一种参数, 常用 P 表示, 0P 1。8.
4、 小概率大事和小概率原理:小概率大事:医学讨论中,将概率小于等于0.05 或 0.01 的大事称为小概率大事。小概率原理:小概率大事并不表示不行能发生,但在某一次试验中,是不会发生的。9. 变量的分类:可编辑资料 - - - 欢迎下载精品名师归纳总结依据取值的特性:数值变量 numerical Variable 定量变量:既有次序的意义,又有间隔的意义,可以认为是连续的 ; 往往有单位。取值间的差异是可以度量的。分类变量 categorical Variable定性变量:取值是是分散、定性的,表现为互不相容的类别和属性。.无序分类 unordered categorics:无次序,无间隔,仅有
5、分类 二项分类 多项分类.有序分类 ordered categorics等级变量 : 仅有次序,无单位。取值间的差异是不行度量的不同分类的相互转化数值变量无序分类变量数值变量有序分类变量有序分类变量无序分类变量信息量只有削减,不行增加统计描述指标,出现方式可分为两种统计图:直观,但精确度稍差统计报表:能尽量具体,精确,但不够直观统计推断:从样本信息外推到总体,以最终获得对所感爱好问题的解答参数估量:样本所在总体特点假设检验:该指标可能的影响因素分析频数分布1. 频数表编制步骤 求极差: R=Xmax- Xmin选定适当的组段数后估量组距:组段数的选取以能反映资料的分布特点为宜, 一般取 8 1
6、2 组列出组段: 组段的含义 : 包括组段的下限而不含组段的上限。如:3.2等价于 3.2,3.5 。划记归组获得频数求频率,完成频数表 :相应的频数除以总数即为频率,各组段的频率总和为1 或者 100%。2. 频数分布所供应的信息频数分布图用以表示数据的分布规律。观看有无可疑值。考察分布的类型。对称分布可编辑资料 - - - 欢迎下载精品名师归纳总结非对称分布 偏态分布 .左偏态 负偏态:指分布的长尾在峰的左侧。.右偏态 正偏态:指分布的长尾在峰的右侧。考察分布的特点集中位置 Central Tendency:描述指标有平均数(算术均数Mean、几何均数 Geometric Mean、中位数
7、 Median 、百分位数Percentile)。离散趋势 Tendencyof Dispersion:描述指标有极差 Range 、四分位数间距 interquartile range、方差Variance、标准差 StandardDeviation、 变 异 系 数 coefficientof variation 。3. 平均数应用的留意事项:同质的资料运算平均数才有意义。 均数适用于:单峰对称分布的资料。几何均数适用于:对数变换后单峰对称的资料。等比资料、滴度资料、对数正态分布资料。运算几何均数时:变量值中不能有 0同一组变量值不能同时存在正、 负值, 如变量值全为负值, 可先将负号除去
8、,算出结果后再冠以负号中位数:理论上可用于任何分布资料,常用于描述偏态资料,开口资料, 有不确定值的资料的集中位置。 但当资料适合运算均数或几何均数时, 不宜用中位数。中位数和百分位数在样本含量较少时不稳固,越靠两端越不稳固。中位数在抗极端值的影响方面, 比均数具有较好的稳固性, 但不如均数精确。不同质的资料应考虑分别运算平均数。百分位数:样本含量较少时不宜运算靠近两端的百分位数。平均数要与变异指标结合使用。4. 变异度指标:四分位数间距 inter-quartilerange :QU QL P 75 P 25,即中间一半观可编辑资料 - - - 欢迎下载精品名师归纳总结察值的极差。222XX
9、X2s22XXXs可编辑资料 - - - 欢迎下载精品名师归纳总结N方差及标准差:n1Nn1可编辑资料 - - - 欢迎下载精品名师归纳总结变异系数 coefficient of variation, CV:为标准差和均数的比值, 排除了平均水平的影响, 并取消了单位。 因此变异系可编辑资料 - - - 欢迎下载精品名师归纳总结数常用于:比较度量衡单位不同的两组或多组资料的变异度比较均数相差悬殊的两组或多组资料的变异度sCV100% X可编辑资料 - - - 欢迎下载精品名师归纳总结5. 变异度的正确应用:极差不稳固,不灵敏标准差的基本内容是离均差, 它显示一组变量值与其均数的间距, 故标准可
10、编辑资料 - - - 欢迎下载精品名师归纳总结差直接的、总结的、平均的描述了变量值的离散程度。在同质的前提下, 标准差大表示变量值的离散程度大, 即变量值的分布分散、不整齐、波动较大。反之,标准差小表示变量值的离散程度小,即变 量值的分布集中、整齐、波动较小。变异系数派生于标准差, 其应用价值在于排除了平均水平的影响, 并排除了单位。6. 总结:每个观看指标均有其特定的变异规律。 描述变异:图形描述统计量描述平均数:均数、几何均数、中位数和百分位数变异度:极差、方差、标准差、四分位数间距、变异系数不同分布的指标,用不同的统计量描述。用平均数与变异度共同描述。可编辑资料 - - - 欢迎下载精品
11、名师归纳总结正态分布1. 公式:假如随机变量 X 的概率密度函数为f X + X212e -22 X可编辑资料 - - - 欢迎下载精品名师归纳总结就称 X 听从正态分布 , 记作 X N,2 , 其中,为分布的均数,为分布的标准差。为总体均数,为总体标准差。为圆周率, e 为自然对数的底, X 为变量,代表横轴的数值, f X 为纵轴数值。2. 正态分布的特点(重要) : 单峰分布。高峰在均数处。以均数为中心,均数两侧完全对称。正态分布有两个参数 parameter ,即位置参数 均数 和变异度参数 标准差 。有些指标本身不听从正态分布,但经过变换之后可以听从正态分布。正态曲线下的面积分布有
12、肯定的规律。X轴与正态曲线所夹面积恒等于1 ,对称区域面积相等。-1.64+1.64内面积为 90%。-1.96+1.96内面积为 95%。-2.58+2.58内面积为 99%。可编辑资料 - - - 欢迎下载精品名师归纳总结正态分布曲线下的面积与标准正态分布曲线下的面积对应 以标准正态离差为单位 。3. 标准正态分布:标准正态分布 standard normal distribution是均数为 0,标准差为 1的正态分布。记为 N0,1 。标准正态分布是一条曲线。可编辑资料 - - - 欢迎下载精品名师归纳总结概率密度函数为:u1- u 2 2e2 u +可编辑资料 - - - 欢迎下载精
13、品名师归纳总结正态分布转换为标准正态分布:如X N,2 ,作变换:uX就 u 听从标准正态分布, u 称为标准正态离差 standard normal deviation4. 正态分布的应用:估量频数分布、质量掌握、确定临床参考值范畴参考值范畴 :1. 参考值范畴 referenceinterval:是绝大多数正常人的某观看指标所在的范畴,绝大多数: 90%, 95%,99%等等。确定参考值范畴的意义:用于判定正常与反常。 “正常人”的定义:排除了影响所讨论的指标的疾病和有关因素的同质的人群。2. 参考值范畴确定的原就:选定足够例数的同质的正常人作为讨论对象:例数过少, 代表性差。 例数过多增
14、加成本,且易导致正常标准把握不严,影响数据的牢靠性掌握检测误差判定是否分组 性别, 年龄组单、双侧问题 one sided or two sided挑选百分界值 90%,95%确定可疑范畴3. 参考值范畴的估量方法:正态分布法、百分位数法抽样误差1. 概念:由于个体变异的存在,在抽样讨论中产生样本统计量和总体参数之间的差异,称为抽样误差( sampling error)。抽样误差的表现:样本均数和总体均数间的差别、 样本均数和样本均数间的差别。2. 中心极限定理 central limit theorem:从均数为 ,标准差为 的正态总体中随机抽样, 样本均数听从均数为 ,标准差为n的正态分布
15、。 Xn从均数为 ,标准差为 的任意总体中随机抽样,当样本含量足够大时,样本均数近似听从均数为 ,标准差为n的正态分布。可编辑资料 - - - 欢迎下载精品名师归纳总结3. 标准误 standard error:用样本统计量的标准差来反映抽样误差的大小,可编辑资料 - - - 欢迎下载精品名师归纳总结又称标准误。s sXn其中, 为总体标准差, n 为抽样的样本例数可编辑资料 - - - 欢迎下载精品名师归纳总结在讨论工作时,由于总体标准差经常未知,可以利用样本标准差近似估量4. 标准误的意义:反映了样本统计量(样本均数,样本率)分布的离散程度,表达了抽样误差的大小。标准误越大,说明样本统计量
16、(样本均数,样本率)的离散程度越大,即用样本统计量来直接估量总体参数越不行靠。标准误的大小与标准差有关, 在例数 n 肯定时,从标准差大的总体中抽样,标准误较大。而当总体肯定时,样本例数越多,标准误越小。说明我们可以通过增加样本含量来削减抽样误差的大小。t 分布1. 依据中心极限定理的内容, 当样本含量足够大时, 对从均数为 ,标准差为 可编辑资料 - - - 欢迎下载精品名师归纳总结的任意总体中随机抽样所得的样本均数进行标准化变换,有X N 0,1n可编辑资料 - - - 欢迎下载精品名师归纳总结2. 由于总体标准差往往是未知的,此时往往用样本标准差代替总体标准差:可编辑资料 - - - 欢
17、迎下载精品名师归纳总结t3. t分布的性质:X ts n这里, 为自由度,取值为 n-1可编辑资料 - - - 欢迎下载精品名师归纳总结t 分布为一簇单峰分布曲线,高峰在0 的位置上,说明从正态总体中随机抽样所得样本运算出的t 值接近 0 的可能性较大。t 分布以 0 为中心,左右对称。分布的高峰位置比 u 分布低,尾部高。t 分布与自由度有关,自由度越小, t 分布的峰越低,而两侧尾部翘得越高。自由度逐步增大时, t 分布逐步靠近标准正态分布。当自由度为无穷大时, t 分布就是标准正态分布。每一自由度下的 t 分布曲线都有其自身分布规律。t 界值表 。可信区间1. 统计推断 statisti
18、calinference:是指如何抽样,以及如何用样本性质推断总体特点,分为参数估量parameter estimation、假设检验 hypothesis testing。2. 参数估量:点估量( Point Estimation:用样本统计量作为总体参数的估量。区间估量 Interval Estimation:3. 可信区间定义:按肯定的概率或可信度 1- 用一个区间来估量总体参数所在的范畴,该范畴通常称为参数的可信区间或者置信区间confidence interval,CI, 预先给定的概率 1- 称为可信度或者置信度confidence level,常取可编辑资料 - - - 欢迎下载
19、精品名师归纳总结95%或 99%。 可信区间 CL , CU 是一开区间 C L、CU 称为可信限。4. 可信区间的运算:可编辑资料 - - - 欢迎下载精品名师归纳总结样本含量较小时 n100 :下限:Xt, sX上限X: t , sX可编辑资料 - - - 欢迎下载精品名师归纳总结样本含量较大时 n100:下限:Xu sX5. 均数之差可信区间的运算:上限:Xu sX可编辑资料 - - - 欢迎下载精品名师归纳总结均数之差”与“均数之差的标准误”之比,听从自由度= n1+n2 -2 的 t分布。可编辑资料 - - - 欢迎下载精品名师归纳总结X 1X 2tsX1 X 2tnn2可编辑资料
20、- - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结12样本含量较大时,听从标准正态分布。X 1X2t N 0,1可编辑资料 - - - 欢迎下载精品名师归纳总结12sXX22可编辑资料 - - - 欢迎下载精品名师归纳总结2 n11 s1n21 s2211可编辑资料 - - - 欢迎下载精品名师归纳总结合并方差:sCn1n22均数之差的标准误: sXX12sC n1n2可编辑资料 - - - 欢迎下载精品名师归纳总结6. 可信区间的两个要素:可信度( Confidence :精确性,牢靠性,即 1- 。一般取 90%,95,可人为掌握。精确性 Precisio
21、n:区间的大小,越小越好。必需二者兼顾7. 可信区间的宽度:可信度越大,可信区间越宽,说明用该区间来估量总体参数(总体均数) 越牢靠。标准差越小, 可信区间就越窄, 意味着假如总体内变异程度较小时, 在相同的可信度下,只需要一个比较窄的可信区间就可以估量总体均数。随着样本含量的增加,可信区间逐步变窄。8. 正确懂得可信区间:可信度为 95%的 CI 的涵义:每 100 个样本,按同样方法运算 95%的 CI, 平均有 95%的 CI 包含了总体参数。这里的 95%,指的是方法本身!而不是某个区间!总体参数虽未知,但却是固定的值,而不是随机变量值。假设检验1. 假设检验的目的: 基本目的就是辨论
22、两个样本是否属一个总体或两个不同的总体,并对总体作出适当的结论。2. 假设检验的一般步骤:步骤 1:建立假设,在假设的前提下有规律可寻零假设 null hypothesis,记为 H0 ,表示目前的差异是由于抽样误差引起的。备择假设 alternativehypothesis,记为 H1 ,表示目前的差异是主要由于本质上的差别引起。步骤 2:确立检验水准( significance level,用于确定何时拒绝 H0 ,一般取 0.05 。步骤 3:运算检验统计量和 P 值运算检验统计量, 即运算样本与所假设总体的偏离。 样本均数与总体tX0sn可编辑资料 - - - 欢迎下载精品名师归纳总结
23、均数0 间的差别可以用统计量t来表示统计量 t 表示,在标准误的尺度下, 样本均数与总体均数 0 的偏离。这种偏离称为标准 t 离差standard t deviation 。依据抽样误差理论, 在 H0 的假设前提下, 统计量 t 听从自由度为 n-1 的 t 分布,即 t 值在 0 的邻近的可能性大,远离 0 的可能性小,离 0 越远可能性越小。步骤 5:界定 P值并作结论3. 假设检验应用的留意事项:A.I 型错误和 II型错误:第一类错误( Type I Error):拒绝了实际上是成立的H0。 其次类错误( Type II Error):不拒绝实际上是不成立的 H0。B. 检验水准的
24、挑选:检验水准有单双侧之分。挑选要有专业背景。检验水准大小的挑选要谨慎。挑选要在运算检验统计量之前。C. 双侧检验与单侧检验:在相同的检验水准下, 正确的挑选单侧检验将比双侧检验得到更多的检验效能。D.P 和的涵义:P 值意义:从 H0 总体中随机获得等于或大于现有统计量值的概率。拒绝H0 时所冒的风险。的意义:犯第一类错误的概率。在假设检验之前人为规定。说明拒绝H0所冒的风险不行超过。E. 正确对待统计结论和专业结论专业上有差别,假设检验拒绝 H0 :结果有效,可以下专业结论。专业上无差别,假设检验不拒绝H0:下无差别的结论。专业上有差别,假设检验不拒绝H0:增大样本含量,削减二类误差;专业
25、上无差别,假设检验拒绝 H0 :改进试验,削减误差。 F.Significant的意义4. 假设检验和可信区间的区分:在相同的之下,如假设检验拒绝H0p ,那么可信度为 1- 的可信区间必定不包括总体参数。反之成立。可信区间和假设检验是对同一问题所作的不同结论,成效等价。t 检验1. 成组设计计量资料比较的t 检验:可编辑资料 - - - 欢迎下载精品名师归纳总结X 1X 2合并方差 方差的加权平均 : n1s2n1 s2可编辑资料 - - - 欢迎下载精品名师归纳总结tsXX21122C可编辑资料 - - - 欢迎下载精品名师归纳总结s12ss2 11 n1n22可编辑资料 - - - 欢迎
26、下载精品名师归纳总结C均数之差的标准误:X 1 X 2n1n2自由度= n1+n2 -2可编辑资料 - - - 欢迎下载精品名师归纳总结2. 两组资料比较的u 检验:当随机抽样的样本例数足够大时, t检验统计量的自由度逐步增大, t分布逐步靠近于标准正态分布,可以利用近似正态分布的原理进行u 检验。可编辑资料 - - - 欢迎下载精品名师归纳总结X AXBuX AX B可编辑资料 - - - 欢迎下载精品名师归纳总结sXXs2ns2n可编辑资料 - - - 欢迎下载精品名师归纳总结AB3. 配对计量资料的t检验:AABB可编辑资料 - - - 欢迎下载精品名师归纳总结配对 t检验的实质就是检验
27、样本差值的总体均数是否为0。4. 均数的假设检验应用条件: 独立性、正态性、方差齐性与应用条件有关的一些内容: 正态性检验、 方差齐性检验、 方差不齐时的近似t检验、大样本时,均数比较的 u检验5. 两个方差的齐性检验:Levene 法:从同一总体随机抽取的样本之两方差,其方差比 大方差/ 小方差2可编辑资料 - - - 欢迎下载精品名师归纳总结的分布听从 F分布: Fs1 大 2s2 小 F ,12ttX 1X 2可编辑资料 - - - 欢迎下载精品名师归纳总结6. 方差不齐时两样本均数比较的近似检验:s2s2可编辑资料 - - - 欢迎下载精品名师归纳总结12可编辑资料 - - - 欢迎下
28、载精品名师归纳总结7. 大样本时均数比较的 u检验:n1n2可编辑资料 - - - 欢迎下载精品名师归纳总结单样本 u 检验两样本 u 检验uX0 snN 0,1可编辑资料 - - - 欢迎下载精品名师归纳总结uX 1X2 N 0,1可编辑资料 - - - 欢迎下载精品名师归纳总结22s1s2n1n2方差分析 ANOVAAnalysis of Variancet检验的局限性单因素两水平1. 因素和水平 :因素factors:将试验对象随机分为如干个组,加以不同的干预,称为处理因素。方差分析中所要检验的对象。在相同的因素下的不同干预,称为不同的水平level。方差分析中因素的不同表现。2. 假如
29、每次 t 检验犯第一类错误的概率是0.05 ,那么要完全的进行比较,犯第一类错误的概率是 11 k 。此为多组间不能进行 t 检验的缘由。3. 单因素方差分析:讨论的是一个处理因素的不同水平间效应的差别。4. 完全随机设计资料的方差分析:完全随机设计是医学科研中最为常用的一种试验设计方法,它是将受试者随机可编辑资料 - - - 欢迎下载精品名师归纳总结的安排到各试验组 可包括对比组 中,进行试验并观看试验效应。 该设计适用面广,可用于两组或多组试验讨论,且各组的样本含量可不相等。可编辑资料 - - - 欢迎下载精品名师归纳总结2XijX2niXiX2X ijX i可编辑资料 - - - 欢迎下
30、载精品名师归纳总结ijiij证明:可编辑资料 - - - 欢迎下载精品名师归纳总结X ij2XX ijX i2X iX可编辑资料 - - - 欢迎下载精品名师归纳总结ijijX ij2X i2X ijX iX iX可编辑资料 - - - 欢迎下载精品名师归纳总结ijij2可编辑资料 - - - 欢迎下载精品名师归纳总结niX iXi2X ijX iniiji212X iX可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结FMS组间SS组间组间SS组间 k1FMS BetweenMS F,可编辑资料 - - - 欢迎下载精品名师归纳总结MS组内SS组
31、内组内SS组内 nkWithin可编辑资料 - - - 欢迎下载精品名师归纳总结5. 随机区组(配伍组)设计的方差分析(两因素多个样本均数的比较):概念:随机区组设计又称配伍组设计,是配对设计的扩展,也可看作1:X 的配对设计。它是将几个条件相同的受试者划为一个区组block或配伍组,然后再按随机的原就,将同一区组的受试者随机安排到各试验组中。实质:两因素方差分析。变异分解, N为总样本含量, k 为水平数, n 为区组数。可编辑资料 - - - 欢迎下载精品名师归纳总结knSS总Xij2X, 总N -1可编辑资料 - - - 欢迎下载精品名师归纳总结i =1 j 1可编辑资料 - - - 欢
32、迎下载精品名师归纳总结knSS处理Xi2X, 处理k-1F处理MS处理MS误差SS处理处理SS误差误差可编辑资料 - - - 欢迎下载精品名师归纳总结i =1 j 1可编辑资料 - - - 欢迎下载精品名师归纳总结knMS配伍SS配伍配伍可编辑资料 - - - 欢迎下载精品名师归纳总结SS配伍i =1 j 1X jX2, 配伍n-1F配伍MS误差SS误差误差可编辑资料 - - - 欢迎下载精品名师归纳总结SS总SS处理SS配伍SS误差可编辑资料 - - - 欢迎下载精品名师归纳总结总处理配伍误差6. 多个样本均数的两两比较:又叫多重比较, Multiple Comparison;分类:事先方案
33、好的多个试验组与一个对比组之间的比较,多个组与一个特定组间的比较或者特定组间的比较。 (Planned Multiple Comparison)方差分析得到有差别的结论后多个组之间的相互比较的探干脆讨论(Post Hoc)。Student-Newman-Keuls 法SNK法可编辑资料 - - - 欢迎下载精品名师归纳总结LSD法Dunnet 法:7. 两两比较的留意事项:对于方差分析后的两两比较均应以方差分析拒绝相应的H0 为前提,且结论均不应与方差分析的结论相悖。显现模糊结论,下结论应当谨慎。方差分析拒绝 H0,但两两比较得不出有差异的结论, 由于方差分析效率高。两种错误的说法:X2 所来
34、自的总体位于 X1 所来自的总体和 X3 所来自的总体之间。X1 和 X2 来自同一总体, X2 和 X3 来自同一总体。只能说明无法判定样本2 来自于何总体!不能用 t检验代替方差分析,也不能用 t检验代替两两比较。无论是 SNK法仍是 Dunnett 法,用于两组比较时,结果与 t检验等价。8. 方差分析的要求:独 立 随 机 抽 样 Independence。 正 态 性 Normality。 方 差 齐 性Homoscedascity9. 方差齐性检验:两个方差的齐性检验: Levene 法s222可编辑资料 - - - 欢迎下载精品名师归纳总结F多个方差的齐性检验: Bartlett
35、法10. 方差分析小结:A. 均数、方差的比较12 , 1s2n11, 1n11,s1s2可编辑资料 - - - 欢迎下载精品名师归纳总结样本均数与总体均数的比较 t检验 配对设计样本均数的比较 配对 t检验 两样本均数的比较t检验,u 检验,F 检验,SNK,Dunnett 多样本均数的比较 F 检验, ANOVA各组间的比较 SNK法 。各试验组与某一对比组间的比较用 Dunnett 法两个方差的比较 F 检验B. 两个方差的比较 Bartlett检验分析单因素多水平间的比较或多个因素对结果的影响。 要求数据满意正态性、独立性、方差齐性单因素方差分析两因素方差分析两两比较变量变换方差分析应
36、用于两组资料的比较时,等价于t 检验。可编辑资料 - - - 欢迎下载精品名师归纳总结11. 变量变换 Variable Transformation方差齐性是一个很 strong的假设,假如不齐,就一般不能直接进行方差分析。变量变换:目的:方差齐性化,正态化,线性化常用方法:对数变换、平方根变换、倒数变换、平方根反正弦变换分类资料的统计描述statistical description for categorical data1. 常用的相对数:作用:第一,表示事物显现的频度。其次,便于比较。可编辑资料 - - - 欢迎下载精品名师归纳总结率:说明某现象发生的频率与强度率 单位时间内实际发生
37、某现象的观看单位数单位时间内可能发生某现象的观看单位数100%可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结构成比:说明某一事物内部各组成部分所占比例。比:说明 A 是 B的多少倍,或百分之几。2相对数应用的留意事项:运算相对数时,分母不宜太小构成比某一组成部分的观看单位数 同一事物各组成部分的观看单位数100%可编辑资料 - - - 欢迎下载精品名师归纳总结对两个或多个相对数指标进行比较时,要考虑抽样误差,进行假设检验, 并不能凭相对数的数值大小轻易做出结论。区分构成比和率合计率的运算不是直接求率的平均两合计率的比较需留意两者的内部构成是否相
38、同3. 标准化率标准化法就是用统一的标准对内部构成不同的各组频率进行调整和对比的方法。不同的标准,所得标准化率不同。标准化率是相对的,其作用仅在于比较,而不表示实际水平。 标准化率不代表总率,也不能完全代替分组比较。二项分布及其应用 Binomial distribution and its application:1. 概率分布: 随机变量的概率分布: 离散分布和连续分布, 依靠于相应的随机变量是离散的仍是连续的。2. 概念:令 x 为 n 次试验中的二项随机变量,胜利的概率P 胜利 p,就 x 的取值为 0, l ,2, n,其联合概率分布为二项分布。可编辑资料 - - - 欢迎下载精品名师归纳总结3. 二项分布的概率设大事 A 显现的概率为。就在 n 次独立试验中,大事 A恰好显现 k 次的概率为:可编辑资料 - - - 欢迎下载精品名师归纳总结n10 1nn1 1n 1C kk 1 n k可编辑资料 - - - 欢迎下载精品名师归纳总结nnn 1 11n 1 0可编辑资料 - - - 欢迎下载精品名师归纳总结4. 二项分布的均数和方差 假如 XB n, ,就 X2X Xnn1n1可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结如均数与标准差不用肯定数而用率表示时,pp21