《工程力学答案(共19页).doc》由会员分享,可在线阅读,更多相关《工程力学答案(共19页).doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上3-5 四连杆机构在图示位置平衡。已知OA=60cm,BC=40cm,作用BC上的力偶的力偶矩大小为M2=1N.m,试求作用在OA上力偶的力偶矩大小M1和AB所受的力FAB所受的力。各杆重量不计。OACBM2M130o解:(1) 研究BC杆,受力分析,画受力图:CBM230oFBFC列平衡方程:(2) 研究AB(二力杆),受力如图:ABFBFA可知:(3) 研究OA杆,受力分析,画受力图:OAM1FAFO列平衡方程:3-8 在图示结构中,各构件的自重都不计,在构件BC上作用一力偶矩为M的力偶,各尺寸如图。求支座A的约束力。AM2BCDllll解:(1) 取BC为研究对
2、象,受力分析,画受力图;M2BCFBFC(2) 取DAC为研究对象,受力分析,画受力图;ACDFCFAFD画封闭的力三角形;FAFCFD解得4-5 AB梁一端砌在墙内,在自由端装有滑轮用以匀速吊起重物D,设重物的重量为G,又AB长为b,斜绳与铅垂线成a角,求固定端的约束力。ABaCDbABaCGbFAxFA yyxMAG解:(1) 研究AB杆(带滑轮),受力分析,画出受力图(平面任意力系);(2) 选坐标系Bxy,列出平衡方程;ABCDaMqaaa4-16 由AC和CD构成的复合梁通过铰链C连接,它的支承和受力如题4-16图所示。已知均布载荷集度q=10 kN/m,力偶M=40 kNm,a=2
3、 m,不计梁重,试求支座A、B、D的约束力和铰链C所受的力。CDMqaaFCFDxdxqdxyx解:(1) 研究CD杆,受力分析,画出受力图(平面平行力系);(2) 选坐标系Cxy,列出平衡方程;(3) 研究ABC杆,受力分析,画出受力图(平面平行力系);yxABCaqaFCFAFBxdxqdx(4) 选坐标系Bxy,列出平衡方程;4-18 由杆AB、BC和CE组成的支架和滑轮E支持着物体。物体重12 kN。D处亦为铰链连接,尺寸如题4-18图所示。试求固定铰链支座A和滚动铰链支座B的约束力以及杆BC所受的力。ABW1.5mCDE1.5m2m2mxyAB1.5mCDE1.5m2m2mFA yF
4、AxFBWW解:(1) 研究整体,受力分析,画出受力图(平面任意力系);(2) 选坐标系Axy,列出平衡方程;(3) 研究CE杆(带滑轮),受力分析,画出受力图(平面任意力系);CDEWWFD yFDxFCBa(4) 选D点为矩心,列出平衡方程;约束力的方向如图所示。ABW600CDE8003004-19 起重构架如题4-19图所示,尺寸单位为mm。滑轮直径d=200 mm,钢丝绳的倾斜部分平行于杆BE。吊起的载荷W=10 kN,其它重量不计,求固定铰链支座A、B的约束力。ABW600CDE800300FB yFBxFA yFAxWxy解:(1) 研究整体,受力分析,画出受力图(平面任意力系)
5、;(2) 选坐标系Bxy,列出平衡方程;(3) 研究ACD杆,受力分析,画出受力图(平面任意力系);ACDFA yFAxFD yFDxFC(4) 选D点为矩心,列出平衡方程;(5) 将FAy代入到前面的平衡方程;约束力的方向如图所示。ABCDEFF45o4-20 AB、AC、DE三杆连接如题4-20图所示。DE杆上有一插销F套在AC杆的导槽内。求在水平杆DE的E端有一铅垂力F作用时,AB杆上所受的力。设AD=DB,DF=FE,BC=DE,所有杆重均不计。解:(1) 整体受力分析,根据三力平衡汇交定理,可知B点的约束力一定沿着BC方向;(2) 研究DFE杆,受力分析,画出受力图(平面任意力系);
6、DEFFD yFDx45oBFF(3) 分别选F点和B点为矩心,列出平衡方程;(4) 研究ADB杆,受力分析,画出受力图(平面任意力系);ABDFD yFDxFA yFAxFBxy(5) 选坐标系Axy,列出平衡方程;6-9 已知物体重W=100 N,斜面倾角为30o(题6-9图a,tan30o=0.577),物块与斜面间摩擦因数为fs=0.38,fs=0.37,求物块与斜面间的摩擦力?并问物体在斜面上是静止、下滑还是上滑?如果使物块沿斜面向上运动,求施加于物块并与斜面平行的力F至少应为多大?W(a)aW(b)aF解:(1) 确定摩擦角,并和主动力合力作用线与接触面法向夹角相比较;Waajf(
7、2) 判断物体的状态,求摩擦力:物体下滑,物体与斜面的动滑动摩擦力为(3) 物体有向上滑动趋势,且静滑动摩擦力达到最大时,全约束力与接触面法向夹角等于摩擦角;WaFajfFRWFFRa+jfa(4) 画封闭的力三角形,求力F;F30oABC6-10 重500 N的物体A置于重400 N的物体B上,B又置于水平面C上如题图所示。已知fAB=0.3,fBC=0.2,今在A上作用一与水平面成30o的力F。问当F力逐渐加大时,是A先动呢?还是A、B一起滑动?如果B物体重为200 N,情况又如何?解:(1) 确定A、B和B、C间的摩擦角:(2) 当A、B间的静滑动摩擦力达到最大时,画物体A的受力图和封闭
8、力三角形;F130oAFR1WAjf1WAFR1F130ojf1(3) 当B、C间的静滑动摩擦力达到最大时,画物体A与B的受力图和封闭力三角形;F230oABCWA+BFR2jf230oWA+BFR2jf2F2(4) 比较F1和F2;物体A先滑动;(4) 如果WB=200 N,则WA+B=700 N,再求F2;物体A和B一起滑动;6-11 均质梯长为l,重为P,B端靠在光滑铅直墙上,如图所示,已知梯与地面的静摩擦因数fsA,求平衡时q=?PABCqlPABCqminlDjfjfFRFB解:(1) 研究AB杆,当A点静滑动摩擦力达到最大时,画受力图(A点约束力用全约束力表示);由三力平衡汇交定理
9、可知,P、FB、FR三力汇交在D点;(2) 找出qmin和j f的几何关系;(3) 得出q角的范围;8-1 试求图示各杆的轴力,并指出轴力的最大值。F2F(b)FF(a)(d)2kN1kN2kN(c)2kN3kN3kN解:(a)(1) 用截面法求内力,取1-1、2-2截面;FF1122(2) 取1-1截面的左段;FFN111(3) 取2-2截面的右段;22FN2(4) 轴力最大值:(b)(1) 求固定端的约束反力;F2FFR2121(2) 取1-1截面的左段;F11FN1(3) 取2-2截面的右段;FR22FN2(4) 轴力最大值:(c)(1) 用截面法求内力,取1-1、2-2、3-3截面;2
10、kN2kN3kN3kN223311(2) 取1-1截面的左段;2kN11FN1(3) 取2-2截面的左段;2kN3kN2211FN2(4) 取3-3截面的右段;3kN33FN3(5) 轴力最大值:(d)(1) 用截面法求内力,取1-1、2-2截面;2kN1kN1122(2) 取1-1截面的右段;2kN1kN11FN1(2) 取2-2截面的右段;1kN22FN2(5) 轴力最大值:qABl(d)ql/410-2.试建立图示各梁的剪力与弯矩方程,并画剪力与弯矩图。l/2BCA(c)Fl/2解:(c)BCAFRARCx2x1(1) 求约束反力(2) 列剪力方程与弯矩方程(3) 画剪力图与弯矩图xFS
11、F(+)(-)FMFl/2(-)x(d) qABxql/4(1) 列剪力方程与弯矩方程(2) 画剪力图与弯矩图ql/4xFS3ql/4(-)(+)(+)xM(-)ql2/4ql2/326 图示悬臂梁,横截面为矩形,承受载荷F1与F2作用,且F1=2F2=5 kN,试计算梁内的最大弯曲正应力,及该应力所在截面上K点处的弯曲正应力。401mF1Cy1mF280Kz30解:(1) 画梁的弯矩图(+)7.5kNxM5kN(2) 最大弯矩(位于固定端):(3) 计算应力:最大应力:K点的应力:11-8 图示简支梁,由No28工字钢制成,在集度为q的均布载荷作用下,测得横截面C底边的纵向正应变=3.010
12、-4,试计算梁内的最大弯曲正应力,已知钢的弹性模量E=200 Gpa,a=1 m。ABaaqCRARB解:(1) 求支反力(2) 画内力图x(+)x(-)3qa/4FSqa/4qa2/49qa2/32M(3) 由胡克定律求得截面C下边缘点的拉应力为:也可以表达为:(4) 梁内的最大弯曲正应力:11-15 图示矩形截面钢梁,承受集中载荷F与集度为q的均布载荷作用,试确定截面尺寸b。已知载荷F=10 kN,q=5 N/mm,许用应力 =160 Mpa。1mmBAqF1mm1mmb2bRARB解:(1) 求约束力:(2) 画出弯矩图:xM3.75kNm2.5kNm(+)(-)(3) 依据强度条件确定
13、截面尺寸解得:11-17 图示外伸梁,承受载荷F作用。已知载荷F=20KN,许用应力=160 Mpa,试选择工字钢型号。BAF4mm1mmRARB解:(1) 求约束力:(2) 画弯矩图:xM20kNm(-)(3) 依据强度条件选择工字钢型号解得:查表,选取No16工字钢11-20 当载荷F直接作用在简支梁AB的跨度中点时,梁内最大弯曲正应力超过许用应力30%。为了消除此种过载,配置一辅助梁CD,试求辅助梁的最小长度a。a/2ma/2mBAF3mmRARB3mmCD解:(1) 当F力直接作用在梁上时,弯矩图为:M(+)3F/2x此时梁内最大弯曲正应力为:解得:.(2) 配置辅助梁后,弯矩图为:M
14、(+)3F/2-Fa/4x依据弯曲正应力强度条件:将式代入上式,解得:15-3 图示两端球形铰支细长压杆,弹性模量E200Gpa,试用欧拉公式计算其临界载荷。(1) 圆形截面,d=25 mm,l=1.0 m;(2) 矩形截面,h2b40 mm,l1.0 m;(3) No16工字钢,l2.0 m。bFdlhzyyz解:(1) 圆形截面杆:两端球铰: =1, (2) 矩形截面杆:两端球铰:=1, IyIz(3) No16工字钢杆:两端球铰:=1, IyIz查表Iy93.110-8 m415-8 图示桁架,由两根弯曲刚度EI相同的等截面细长压杆组成。,设载荷F与杆AB的轴线的夹角为q,且0qp/2,试求载荷F的极限值。aFABC1260o解:(1) 分析铰B的受力,画受力图和封闭的力三角形:90oFF1F2F2F1F (2) 两杆的临界压力: AB和BC皆为细长压杆,则有:(3) 两杆同时达到临界压力值, F为最大值;由铰B的平衡得:15-12 图示压杆,横截面为bh的矩形, 试从稳定性方面考虑,确定h/b的最佳值。当压杆在xz平面内失稳时,可取y0.7。 xyxzhlb解:(1) 在xz平面内弯曲时的柔度;(2) 在xy平面内弯曲时的柔度;(3) 考虑两个平面内弯曲的等稳定性;专心-专注-专业