《2015-2017近三年高考理科立体几何高考题汇编.docx》由会员分享,可在线阅读,更多相关《2015-2017近三年高考理科立体几何高考题汇编.docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上2015-2017高考立体几何题汇编2017(三)16a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:当直线AB与a成60角时,AB与b成30角;当直线AB与a成60角时,AB与b成60角;直线AB与a所成角的最小值为45;直线AB与a所成角的最小值为60;其中正确的是_。(填写所有正确结论的编号)2017(三)19(12分)如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,ABD=CBD,AB=BD(1)证明:平面ACD平面ABC;(2)过AC的平面交BD于点E,若平面
2、AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值2017(二)4如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为ABCD2017(二)10已知直三棱柱中,则异面直线与所成角的余弦值为ABCD2017(二)19(12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD, E是PD的中点(1)证明:直线平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为,求二面角的余弦值2017(一)7某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正
3、方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为2017(一)18(12分)如图,在四棱锥PABCD中,AB/CD,且.(1)证明:平面PAB平面PAD;(2)若PA=PD=AB=DC,求二面角APBC的余弦值.2017(天津)(17)(本小题满分13分)如图,在三棱锥P-ABC中,PA底面ABC,.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.()求证:MN平面BDE;()求二面角C-EM-N的正弦值;()已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的2016(二)(19)(本小
4、题满分12分)如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将DEF沿EF折到的位置,. (I)证明:平面ABCD;(II)求二面角的正弦值. 2016(北京)6.某三棱锥的三视图如图所示,则该三棱锥的体积为()A. B. C. D.2016(北京)17.(本小题14分)如图,在四棱锥中,平面平面,.(1)求证:平面;(2)求直线与平面所成角的正弦值;2015(二)(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(A) (B) (C) (D)2015(二)(19(
5、本小题满分12分)如图,长方体ABCDA1B1C1D1中,AB = 16,BC = 10,AA1 = 8,点E,F分别在A1B1,D1C1上,A1E = D1F = 4,过点E,F的平面与此长方体的面相交,交线围成一个正方形。(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面所成的角的正弦值。2015(一)(18)如图,四边形ABCD为菱形,ABC=120,E,F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE=2DF,AEEC。(1)证明:平面AEC平面AFC(2)求直线AE与直线CF所成角的余弦值2015(北京)5.某三棱锥的三视图如图所示,则该三
6、棱锥的表面积是A B C D52015(北京)17.(本小题14分)如图,在四棱锥中,为等边三角形,平面平面,为的中点() 求证:;() 求二面角的余弦值; () 若平面,求的值2015(陕西)5.一个几何体的三视图如图所示,则该几何体的表面积为( )A B C D2015(陕西)18(本小题满分12分)如图,在直角梯形中,是的中点,是与的交点将沿折起到的位置,如图 (I)证明:平面;(II)若平面平面,求平面与平面夹角的余弦值答案:2017(三)16. 2017(三)19.解:(1)由题设可得,又是直角三角形,所以取AC的中点O,连接DO,BO,则DOAC,DO=AO又由于所以(2)由题设及
7、(1)知,两两垂直,以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系,则由题设知,四面体ABCE的体积为四面体ABCD的体积的,从而E到平面ABC的距离为D到平面ABC的距离的,即E为DB的中点,得E.故设是平面DAE的法向量,则可取设是平面AEC的法向量,则同理可得则所以二面角D-AE-C的余弦值为2017(二)4【答案】B【解析】试题分析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积,故该组合体的体积故选B2017(二)10.【答案】C2017(二)192017(一)7试题分析:
8、由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为,故选B.2017(一)19.【解析】试题解析:(1)由已知,得ABAP,CDPD.由于AB/CD ,故ABPD ,从而AB平面PAD.又AB 平面PAB,所以平面PAB平面PAD.(2)在平面内作,垂足为,由(1)可知,平面,故,可得平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,.所以,.设是平面的法向量,则即可取.设是平面的法向量,则即可取.则,所以二面角的余弦值为.2017(天津)(17)【答案】 (1)证明见解析(2)
9、(3) 或 ()证明:=(0,2,0),=(2,0,).设,为平面BDE的法向量,则,即.不妨设,可得.又=(1,2,),可得.所以,线段AH的长为或.2016(二)19.(本小题满分12分)【答案】()详见解析;().【解析】试题分析:()证,再证,最后证;()用向量法求解.试题解析:(I)由已知得,又由得,故.因此,从而.由,得.由得.所以,.于是,故.又,而,所以. (II)如图,以为坐标原点,的方向为轴的正方向,建立空间直角坐标系,则,.设是平面的法向量,则,即,所以可以取.设是平面的法向量,则,即,所以可以取.于是, .因此二面角的正弦值是.2016(北京)6.试题分析:分析三视图可
10、知,该几何体为一三棱锥,其体积,故选A.2016(北京)17【答案】(1)见解析;(2);(3)存在,(3)设是棱上一点,则存在使得.因此点.因为平面,所以平面当且仅当,即,解得.所以在棱上存在点使得平面,此时.2015(二)6【答案】D【解析】由三视图得,在正方体中,截去四面体,如图所示,设正方体棱长为,则,故剩余几何体体积为,所以截去部分体积与剩余部分体积的比值为2015(二)192015(一)18【答案】()见解析(),EGFG,ACFG=G,EG平面AFC,EG面AEC,平面AFC平面AEC. 6分()如图,以G为坐标原点,分别以的方向为轴,y轴正方向,为单位长度,建立空间直角坐标系G
11、-xyz,由()可得A(0,0),E(1,0, ),F(1,0,),C(0,0),=(1,),=(-1,-,).10分故.所以直线AE与CF所成的角的余弦值为. 12分2015(北京)5.三棱锥表面积.2015(陕西)5试题分析:由三视图知:该几何体是半个圆柱,其中底面圆的半径为,母线长为,所以该几何体的表面积是,故选D2015(陕西)18【答案】(I)证明见解析;(II)试题解析:(I)在图1中,因为AB=BC=1,AD=2,E是AD的中点,BAD=,所以BE AC即在图2中,BE ,BE OC从而BE平面 又CDBE,所以CD平面.(II)由已知,平面平面BCDE,又由(1)知,BE ,BE OC所以为二面角的平面角,所以.如图,以O为原点,建立空间直角坐标系,因为, 所以得 ,.设平面的法向量,平面的法向量,平面与平面夹角为,则,得,取,得,取,从而,即平面与平面夹角的余弦值为.专心-专注-专业