解析几何中的定点和定值问题(共25页).doc

上传人:飞****2 文档编号:15141109 上传时间:2022-05-11 格式:DOC 页数:25 大小:1.97MB
返回 下载 相关 举报
解析几何中的定点和定值问题(共25页).doc_第1页
第1页 / 共25页
解析几何中的定点和定值问题(共25页).doc_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《解析几何中的定点和定值问题(共25页).doc》由会员分享,可在线阅读,更多相关《解析几何中的定点和定值问题(共25页).doc(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上解析几何中的定点定值问题考纲解读:定点定值问题是解析几何解答题的考查重点。此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。一、 定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。AByOx例1、已知A、B是抛物线y2=2px (p0)上异于原点O的两个不同点,直线OA和OB的倾斜角分别为和,当、变化且+=时,

2、证明直线AB恒过定点,并求出该定点的坐标。例2已知椭圆:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切求椭圆C的方程;设,、是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;在的条件下,证明直线与轴相交于定点【针对性练习1】 在直角坐标系中,点到点,的距离之和是,点的轨迹是与轴的负半轴交于点,不过点的直线与轨迹交于不同的两点和求轨迹的方程;当时,求与的关系,并证明直线过定点【针对性练习2】在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M、,其中m0,。(1)设动点P满足,求点P的轨迹

3、;(2)设,求点T的坐标;(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。【针对性练习3】已知椭圆C中心在原点,焦点在轴上,焦距为,短轴长为()求椭圆C的标准方程;()若直线:与椭圆交于不同的两点(不是椭圆的左、右顶点),且以为直径的圆经过椭圆的右顶点求证:直线过定点,并求出定点的坐标例3、已知椭圆的焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率,过椭圆的右焦点作与坐标轴不垂直的直线,交椭圆于、两点。(I)求椭圆的标准方程; ()设点是线段上的一个动点,且,求的取值范围; ()设点是点关于轴的对称点,在轴上是否存在一个定点,使得、三点共线?若存在,求出定点的坐标,若不存在,请

4、说明理由。二、 定值问题在解析几何中,有些几何量与参数无关,这就构成了定值问题,解决这类问题时,要善于运用辩证的观点去思考分析,在动点的“变”中寻求定值的“不变”性,一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果,;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口,将该问

5、题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。同时有许多定值问题,通过特殊探索法不但能够确定出定值,还可以为我们提供解题的线索。如果试题是客观题形式出现,特珠化方法往往比较奏效。例4、已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点的直线交椭圆于A、B两点,共线。(1)求椭圆的离心率;(2)设M为椭圆上任意一点,且,证明为定值。例5、已知,椭圆C过点A,两个焦点为(1,0),(1,0)。(1)求椭圆C的方程; (2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。将第二问的结论进行如下推广:结论1.过

6、椭圆上任一点任意作两条斜率互为相反数的直线交椭圆于E、F两点,则直线EF的斜率为定值(常数)。结论2.过双曲线上任一点任意作两条斜率互为相反数的直线交椭圆于E、F两点,则直线EF的斜率为定值(常数)。结论3.过抛物线上任一点任意作两条斜率互为相反数的直线交椭圆于E、F两点,则直线EF的斜率为定值(常数)。例6、已知椭圆的中心在原点,焦点在轴的非负半轴上,点到短轴端点的距离是4,椭圆上的点到焦点距离的最大值是6.()求椭圆的标准方程和离心率;()若为焦点关于直线的对称点,动点满足,问是否存在一个定点,使到点的距离为定值?若存在,求出点的坐标及此定值;若不存在,请说明理由.例7、已知抛物线C的顶点

7、在坐标原点,焦点在x轴上,P(2,0)为定点()若点P为抛物线的焦点,求抛物线C的方程;()若动圆M过点P,且圆心M在抛物线C上运动,点A、B是圆M与轴的两交点,试推断是否存在一条抛物线C,使|AB|为定值?若存在,求这个定值;若不存在,说明理由例8、已知椭圆的中心在原点,焦点在轴上,椭圆上的点到焦点的距离的最小值为,离心率为()求椭圆的方程;()过点作直线交于、两点,试问:在轴上是否存在一个定点,为定值?若存在,求出这个定点的坐标;若不存在,请说明理由三、 定直线问题例9、设椭圆过点,且焦点为()求椭圆的方程;()当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足,证明:点总在某定直线

8、上例10、已知椭圆C的离心率,长轴的左右端点分别为,。()求椭圆C的方程;()设直线与椭圆C交于P、Q两点,直线与交于点S。试问:当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由。四、 其它定值问题例11、已知双曲线的离心率为,右准线方程为()求双曲线的方程;()设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值.例12、己知椭圆 (ab0),过其中心O的任意两条互相垂直的直径是P1P2、OxyP1Q1P2Q2A1A2B1B2Q1Q2,求证:以两条直径的四个端点所成的四边形P1Q1P2Q2与一定圆相切。探索定圆:取椭圆长轴和短轴

9、为两直径,则的方程为,原点O到直线的距离为,则与菱形内切的圆方程为。例13、已知P是双曲线上的一个定点,过点P作两条互相垂直的直线分别交双曲线于P1、P2两点(异于P点),求证:直线P1P2的方向不变。探索定值:取P,过P点且互相垂直的直线中有一条过原点,则这一条直线xPP1P2yO与曲线的另一个交点,其斜率 PP2的方程为把代入解得 (定值) 证明:设PP1的斜率为,则PP2的斜率为 ,PP1的方程为 PP2的方程为,与抛物 联立解得、 ,从而(定值) EX:过抛物线y2=2px(P0)上一定点(x0,y0)作两条直线分别交抛物线于A,B两点,满足直线PA、PB斜率存在且倾斜角互补,则AB的

10、斜率为定值。推广:抛物线推广到椭圆或双双曲线均可。五、练习1、椭圆中心在原点,焦点在x轴上,离心率为,三角形ABM的三个顶点都在椭圆上,其中M点为(1,1),且直线MA、MB的斜率之和为0。(1)求椭圆的方程。(2)求证:直线AB的斜率是定值。分析:(1)x2+2y2=3 (2)2、已知定点及椭圆,过点的动直线与椭圆相交于两点.()若线段中点的横坐标是,求直线的方程;()在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.分析:M(,0) 3、已知不垂直于x轴的动直线l交抛物线y2=2mx(m0)于A、B两点,若A、B两点满足AQP=BQP,若其中Q点坐标为(-4,0),原

11、点O为PQ中点。(1)证明:A、P、B三点线;(2)当m=2时,是否存在垂直于x轴的直线l,使得l被以PA为直径的圆所截得的弦长为定值?如果存在求出l的方程。分析:设点AB的坐标(2)l:x=3.4、 已知椭圆的左、右焦点分别为F1,F2,短轴的两个端点为A、B,且四边形F1AF2B是边长为2的正方形。(1)求椭圆的方程。(2)若C、D分别是椭圆长轴的左、右端点,动点M满足MDCD,连结CM交椭圆于点P,证明:为值。(3)在(2)的条件下,试问x轴上是否存在异于C的定点Q,使得以MP为直径的圆过直线DP,MQ的交点,若存在,求出点Q的坐标。分析:(1)(2)由O、M、P三点共线,得,所以=4(

12、3)设Q点(a,0),由,得a=0.5、设P为双曲线上任意一点,F1,F2是双曲线的左右焦点,若的最小值是-1,双曲线的离心率是。(1)求双曲线C的方程;(2)过双曲线C的右焦点F2的直线交双曲线于A、B两点,过作右准线的垂线,垂足为C,求证:直线AC恒过定点。分析:(1) (2)先猜再证:(,0)换掉x1代入韦达定理得证。方法二:设AB:代入方程得:()故AC:=又2my1y2=-(y1+y2)然后代入韦达定理得。6、在平面直角坐标系xOy中,RtABC的斜边BC恰在x轴上,点B(2,0),C(2,0),且AD为BC边上的高。(I)求AD中点G的轨迹方程; (II)若过点(1,0)的直线l与

13、(I)中G的轨迹交于两不同点P、Q,试问在x轴上是否存在定点E(m,0),使恒为定值?若存在,求出点E的坐标及实数的值;若不存在,请说明理由。分析:(1) (2)m= 定值为 不容易先猜出,只能是化简求出。7、已知直线l过椭圆E:的右焦点F,且与E相交于P,Q两点。(1) 设,求点R的轨迹方程。(2) 若直线l的倾斜角为60,求的值。(当l的倾斜角不定时,可证是定值。)分析: (2)可先猜再证:解析几何中的定点定值问题考纲解读:定点定值问题是解析几何解答题的考查重点。此类问题定中有动,动中有定,并且常与轨迹问题,曲线系问题等相结合,深入考查直线的圆,圆锥曲线,直线和圆锥曲线位置关系等相关知识。

14、考查数形结合,分类讨论,化归与转化,函数和方程等数学思想方法。四、 定点问题解题的关健在于寻找题中用来联系已知量,未知量的垂直关系、中点关系、方程、不等式,然后将已知量,未知量代入上述关系,通过整理,变形转化为过定点的直线系、曲线系来解决。AByOx例1、已知A、B是抛物线y2=2px (p0)上异于原点O的两个不同点,直线OA和OB的倾斜角分别为和,当、变化且+=时,证明直线AB恒过定点,并求出该定点的坐标。解析: 设A(),B(),则,代入得 (1)又设直线AB的方程为,则,代入(1)式得直线AB的方程为直线AB过定点(-说明:本题在特殊条件下很难探索出定点,因此要从已知出发,把所求的定点

15、问题转化为求直线AB,再从AB直线系中看出定点。例2【2010东城一模】已知椭圆:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切求椭圆C的方程;设,、是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;在的条件下,证明直线与轴相交于定点解析:由题意知,所以,即,又因为,所以,故椭圆的方程为:由题意知直线的斜率存在,设直线的方程为 联立消去得:,由得,又不合题意,所以直线的斜率的取值范围是或设点,则,直线的方程为,令,得,将代入整理,得 由得代入整理,得,所以直线与轴相交于定点【针对性练习1】 在直角坐标系中,点到点,的距离之和是,点的轨迹是与轴的负半

16、轴交于点,不过点的直线与轨迹交于不同的两点和求轨迹的方程;当时,求与的关系,并证明直线过定点解:点到,的距离之和是,的轨迹是长轴为,焦点在轴上焦中为的椭圆,其方程为 将,代入曲线的方程,整理得 ,因为直线与曲线交于不同的两点和,所以 设,则, 且,显然,曲线与轴的负半轴交于点,所以,由,得将、代入上式,整理得所以,即或经检验,都符合条件,当时,直线的方程为显然,此时直线经过定点点即直线经过点,与题意不符当时,直线的方程为显然,此时直线经过定点点,且不过点综上,与的关系是:,且直线经过定点点【针对性练习2】在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA

17、、TB与椭圆分别交于点M、,其中m0,。(1)设动点P满足,求点P的轨迹;(2)设,求点T的坐标;(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。【解析】 本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识。考查运算求解能力和探究问题的能力。解:(1)设点P(x,y),则:F(2,0)、B(3,0)、A(-3,0)。由,得 化简得。故所求点P的轨迹为直线。(2)将分别代入椭圆方程,以及得:M(2,)、N(,)直线MTA方程为:,即,直线NTB 方程为:,即。联立方程组,解得:,所以点T的坐标为。(3)点T的坐标为直线MTA方程为:,即,直线NTB 方程为:,即。分别

18、与椭圆联立方程组,同时考虑到,解得:、。(方法一)当时,直线MN方程为: 令,解得:。此时必过点D(1,0);当时,直线MN方程为:,与x轴交点为D(1,0)。所以直线MN必过x轴上的一定点D(1,0)。(方法二)若,则由及,得,此时直线MN的方程为,过点D(1,0)。若,则,直线MD的斜率,直线ND的斜率,得,所以直线MN过D点。因此,直线MN必过轴上的点(1,0)。【针对性练习3】(2011年石景山期末理18)已知椭圆C中心在原点,焦点在轴上,焦距为,短轴长为()求椭圆C的标准方程;()若直线:与椭圆交于不同的两点(不是椭圆的左、右顶点),且以为直径的圆经过椭圆的右顶点求证:直线过定点,并

19、求出定点的坐标解: ()设椭圆的长半轴为,短半轴长为,半焦距为,则 解得 椭圆C的标准方程为 4分()由方程组 消去,得 6分由题意, 整理得: 7分设,则, 8分由已知, 且椭圆的右顶点为, 10分即 ,也即 ,整理得解得 或 ,均满足 11分当时,直线的方程为 ,过定点,不符合题意舍去;当时,直线的方程为 ,过定点, 故直线过定点,且定点的坐标为 13分例3、已知椭圆的焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率,过椭圆的右焦点作与坐标轴不垂直的直线,交椭圆于、两点。 (I)求椭圆的标准方程; ()设点是线段上的一个动点,且,求的取值范围; ()设点是点关于轴的对称点,在轴上是否存在

20、一个定点,使得、三点共线?若存在,求出定点的坐标,若不存在,请说明理由。解法一: (I)设椭圆方程为,由题意知故椭圆方程为 ()由(I)得,所以,设的方程为()代入,得 设则,由,当时,有成立。()在轴上存在定点,使得、三点共线。依题意知,直线BC的方程为, 令,则的方程为、在直线上,在轴上存在定点,使得三点共线。解法二:()由(I)得,所以。设的方程为 代入,得设则 当时,有成立。 ()在轴上存在定点,使得、三点共线。 设存在使得、三点共线,则, , 即 ,存在,使得三点共线。五、 定值问题在解析几何中,有些几何量与参数无关,这就构成了定值问题,解决这类问题时,要善于运用辩证的观点去思考分析

21、,在动点的“变”中寻求定值的“不变”性,一种思路是进行一般计算推理求出其结果,选定一个适合该题设的参变量,用题中已知量和参变量表示题中所涉及的定义,方程,几何性质,再用韦达定理,点差法等导出所求定值关系所需要的表达式,并将其代入定值关系式,化简整理求出结果,;另一种思路是通过考查极端位置,探索出“定值”是多少,用特殊探索法(特殊值、特殊位置、特殊图形等)先确定出定值,揭开神秘的面纱,这样可将盲目的探索问题转化为有方向有目标的一般性证明题,从而找到解决问题的突破口,将该问题涉及的几何形式转化为代数形式或三角形式,证明该式是恒定的。同时有许多定值问题,通过特殊探索法不但能够确定出定值,还可以为我们

22、提供解题的线索。如果试题是客观题形式出现,特珠化方法往往比较奏效。例4、已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点的直线交椭圆于A、B两点,共线。(1)求椭圆的离心率;(2)设M为椭圆上任意一点,且,证明为定值。解析:(1)设椭圆方程为 (ab0),A(x1,y1),B(x2,y2) ,AB的中点为N(x0,y0),两式相减及得到,所以直线ON的方向向量为, ,即,从而得 (2)探索定值 因为M是椭圆上任意一点,若M与A重合,则,此时,证明 ,椭圆方程为,又直线方程为又设M(x,y),则由得,代入椭圆方程整理得又 ,例5、已知,椭圆C过点A,两个焦点为(1,0),(1,0

23、)。(1) 求椭圆C的方程; (2) E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。解析:(1)由题意,c=1,可设椭圆方程为,解得,(舍去)所以椭圆方程为。 (2)设直线AE方程为:,代入得 设,因为点在椭圆上,所以 , 又直线AF的斜率与AE的斜率互为相反数,在上式中以K代K,可得, 所以直线EF的斜率即直线EF的斜率为定值,其值为。 将第二问的结论进行如下推广:结论1.过椭圆上任一点任意作两条斜率互为相反数的直线交椭圆于E、F两点,则直线EF的斜率为定值(常数)。证明:直线AE的方程为,则直线AF的方程为, 联立和,消去y

24、可得 结论2.过双曲线上任一点任意作两条斜率互为相反数的直线交椭圆于E、F两点,则直线EF的斜率为定值(常数)。结论3.过抛物线上任一点任意作两条斜率互为相反数的直线交椭圆于E、F两点,则直线EF的斜率为定值(常数)。例6、【2010巢湖市第一学期期末质检】已知椭圆的中心在原点,焦点在轴的非负半轴上,点到短轴端点的距离是4,椭圆上的点到焦点距离的最大值是6.()求椭圆的标准方程和离心率;()若为焦点关于直线的对称点,动点满足,问是否存在一个定点,使到点的距离为定值?若存在,求出点的坐标及此定值;若不存在,请说明理由.解析:()设椭圆长半轴长及半焦距分别为,由已知得. 所以椭圆的标准方程为. 离

25、心率 (),设由得化简得,即故存在一个定点,使到点的距离为定值,其定值为 例7、【2010湖南师大附中第二次月考】已知抛物线C的顶点在坐标原点,焦点在x轴上,P(2,0)为定点()若点P为抛物线的焦点,求抛物线C的方程;()若动圆M过点P,且圆心M在抛物线C上运动,点A、B是圆M与轴的两交点,试推断是否存在一条抛物线C,使|AB|为定值?若存在,求这个定值;若不存在,说明理由解析:() 设抛物线方程为,则抛物线的焦点坐标为.由已知,即,故抛物线C的方程是 ()设圆心(),点A,B. 因为圆过点P(2,0),则可设圆M的方程为. 令,得.则,. 所以. ,设抛物线C的方程为,因为圆心M在抛物线C

26、上,则. 所以. 由此可得,当时,为定值故存在一条抛物线,使|AB|为定值4. 例8、已知椭圆的中心在原点,焦点在轴上,椭圆上的点到焦点的距离的最小值为,离心率为 ()求椭圆的方程; ()过点作直线交于、两点,试问:在轴上是否存在一个定点,为定值?若存在,求出这个定点的坐标;若不存在,请说明理由解析:(I)设椭圆E的方程为,由已知得:。2分椭圆E的方程为。3分()法一:假设存在符合条件的点,又设,则:。5分当直线的斜率存在时,设直线的方程为:,则由得7分所以9分对于任意的值,为定值,所以,得,所以;11分当直线的斜率不存在时,直线由得综上述知,符合条件的点存在,起坐标为13分法二:假设存在点,

27、又设则:=.5分当直线的斜率不为0时,设直线的方程为,由得7分9分设则11分当直线的斜率为0时,直线,由得:综上述知,符合条件的点存在,其坐标为。13分六、 定直线问题例9、设椭圆过点,且焦点为()求椭圆的方程;()当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足,证明:点总在某定直线上解析: (1)由题意: ,解得,所求椭圆方程为 (2)设点,由题设,均不为零。且 又 四点共线,可设,于是 (1) (2)由于在椭圆C上,将(1),(2)分别代入C的方程整理得 (3) (4)(4)(3) 得 ,即点总在定直线上例10、已知椭圆C的离心率,长轴的左右端点分别为,。()求椭圆C的方程;()

28、设直线与椭圆C交于P、Q两点,直线与交于点S。试问:当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,请说明理由。解法一:()设椭圆的方程为。1分,。4分椭圆的方程为。5分()取得,直线的方程是直线的方程是交点为7分,若,由对称性可知交点为若点在同一条直线上,则直线只能为。8分以下证明对于任意的直线与直线的交点均在直线上。事实上,由得即,记,则。9分设与交于点由得设与交于点由得10,12分,即与重合,这说明,当变化时,点恒在定直线上。13分解法二:()取得,直线的方程是直线的方程是交点为7分取得,直线的方程是直线的方程是交点为若交点在同一条直线上,则直线只

29、能为。8分以下证明对于任意的直线与直线的交点均在直线上。事实上,由得即,记,则。9分的方程是的方程是消去得以下用分析法证明时,式恒成立。要证明式恒成立,只需证明即证即证式恒成立。这说明,当变化时,点恒在定直线上。解法三:()由得即。记,则。6分的方程是的方程是7分由得9分即12分这说明,当变化时,点恒在定直线上。13分五、 其它定值问题例11、已知双曲线的离心率为,右准线方程为()求双曲线的方程;()设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值.解析:本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力()

30、由题意,得,解得, ,所求双曲线的方程为.()点在圆上,圆在点处的切线方程为,化简得.由及得 切线与双曲线C交于不同的两点A、B,且,设A、B两点的坐标分别为,则, 的大小为.例12、己知椭圆 (ab0),过其中心O的任意两条互相垂直的直径是P1P2、OxyP1Q1P2Q2A1A2B1B2Q1Q2,求证:以两条直径的四个端点所成的四边形P1Q1P2Q2与一定圆相切。探索定圆:取椭圆长轴和短轴为两直径,则的方程为,原点O到直线的距离为,则与菱形内切的圆方程为。证明:设直径P1P2的方程为 则Q1Q2的方程为 解得 同理OQ22=,作OHP2Q2 则 又四边形P1Q1P2Q2是菱形,菱形P1Q1P

31、2Q2必外切于圆.例13、已知P是双曲线上的一个定点,过点P作两条互相垂直的直线分别交双曲线于P1、P2两点(异于P点),求证:直线P1P2的方向不变。探索定值:取P,过P点且互相垂直的直线中有一条过原点,则这一条直线xPP1P2yO与曲线的另一个交点,其斜率 PP2的方程为把代入解得 (定值) 证明:设PP1的斜率为,则PP2的斜率为 ,PP1的方程为 PP2的方程为,与抛物 联立解得、 ,从而(定值) EX:过抛物线y2=2px(P0)上一定点(x0,y0)作两条直线分别交抛物线于A,B两点,满足直线PA、PB斜率存在且倾斜角互补,则AB的斜率为定值。推广:抛物线推广到椭圆或双双曲线均可。

32、五、练习1、(2008唐山三模)椭圆中心在原点,焦点在x轴上,离心率为,三角形ABM的三个顶点都在椭圆上,其中M点为(1,1),且直线MA、MB的斜率之和为0。(1)求椭圆的方程。(2)求证:直线AB的斜率是定值。分析:(1)x2+2y2=3 (2)2、(2008年西城一模)已知定点及椭圆,过点的动直线与椭圆相交于两点.()若线段中点的横坐标是,求直线的方程;()在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.分析:M(,0) 3、已知不垂直于x轴的动直线l交抛物线y2=2mx(m0)于A、B两点,若A、B两点满足AQP=BQP,若其中Q点坐标为(-4,0),原点O为P

33、Q中点。(1)证明:A、P、B三点线;(2)当m=2时,是否存在垂直于x轴的直线l,使得l被以PA为直径的圆所截得的弦长为定值?如果存在求出l的方程。分析:设点AB的坐标(2)l:x=3.4、(2009年保定统测)已知椭圆的左、右焦点分别为F1,F2,短轴的两个端点为A、B,且四边形F1AF2B是边长为2的正方形。(1) 求椭圆的方程。(2) 若C、D分别是椭圆长轴的左、右端点,动点M满足MDCD,连结CM交椭圆于点P,证明:为值。(3) 在(2)的条件下,试问x轴上是否存在异于C的定点Q,使得以MP为直径的圆过直线DP,MQ的交点,若存在,求出点Q的坐标。分析:(1)(2)由O、M、P三点共

34、线,得,所以=4(3)设Q点(a,0),由,得a=0.5、(2009年邯郸第一次模拟)设P为双曲线上任意一点,F1,F2是双曲线的左右焦点,若的最小值是-1,双曲线的离心率是。(1) 求双曲线C的方程;(2)过双曲线C的右焦点F2的直线交双曲线于A、B两点,过作右准线的垂线,垂足为C,求证:直线AC恒过定点。分析:(1) (2)先猜再证:(,0)换掉x1代入韦达定理得证。方法二:设AB:代入方程得:()故AC:=又2my1y2=-(y1+y2)然后代入韦达定理得。6、在平面直角坐标系xOy中,RtABC的斜边BC恰在x轴上,点B(2,0),C(2,0),且AD为BC边上的高。(I)求AD中点G的轨迹方程; (II)若过点(1,0)的直线l与(I)中G的轨迹交于两不同点P、Q,试问在x轴上是否存在定点E(m,0),使恒为定值?若存在,求出点E的坐标及实数的值;若不存在,请说明理由。分析:(1)(2) m= 定值为 不容易先猜出,只能是化简求出。7、(2009年衡水三模)已知直线l过椭圆E:的右焦点F,且与E相交于P,Q两点。(3) 设,求点R的轨迹方程。(4) 若直线l的倾斜角为60,求的值。(当l的倾斜角不定时,可证是定值。)分析: (2)可先猜再证:专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁