高中数学新课标典型例题-简单线性规划(共16页).doc

上传人:飞****2 文档编号:15140478 上传时间:2022-05-11 格式:DOC 页数:16 大小:1.45MB
返回 下载 相关 举报
高中数学新课标典型例题-简单线性规划(共16页).doc_第1页
第1页 / 共16页
高中数学新课标典型例题-简单线性规划(共16页).doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《高中数学新课标典型例题-简单线性规划(共16页).doc》由会员分享,可在线阅读,更多相关《高中数学新课标典型例题-简单线性规划(共16页).doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上典型例题一例1画出不等式组表示的平面区域分析:采用“图解法”确定不等式组每一不等式所表示的平面区域,然后求其公共部分解:把,代入中得 不等式表示直线下方的区域(包括边界),即位于原点的一侧,同理可画出其他两部分,不等式组所表示的区域如图所示说明:“图解法”是判别二元一次不等式所表示的区域行之有效的一种方法典型例题二例2 画出表示的区域,并求所有的正整数解分析:原不等式等价于而求正整数解则意味着,还有限制条件,即求解:依照二元一次不等式表示的平面区域,知表示的区域如下图:对于的正整数解,先画出不等式组所表示的平面区域,如图所示容易求得,在其区域内的整数解为、说明:这类题

2、可以将平面直角坐标系用网络线画出来,然后在不等式组所表示的平面区域内找出符合题设要求的整数点来典型例题三例3 求不等式组所表示的平面区域的面积分析:本题的关键是能够将不等式组所表示的平面区域作出来,判断其形状进而求出其面积而要将平面区域作出来的关键又是能够对不等式组中的两个不等式进行化简和变形,如何变形?需对绝对值加以讨论解:不等式可化为或;不等式可化为或在平面直角坐标系内作出四条射线, ,则不等式组所表示的平面区域如图 由于与、与互相垂直,所以平面区域是一个矩形根据两条平行线之间的距离公式可得矩形的两条边的长度分别为和所以其面积为典型例题四例1若、满足条件求的最大值和最小值分析:画出可行域,

3、平移直线找最优解解:作出约束条件所表示的平面区域,即可行域,如图所示作直线,即,它表示斜率为,纵截距为的平行直线系,当它在可行域内滑动时,由图可知,直线过点时,取得最大值,当过点时,取得最小值 说明:解决线性规划问题,首先应明确可行域,再将线性目标函数作平移取得最值典型例题五例5 用不等式表示以,为顶点的三角形内部的平面区域分析:首先要将三点中的任意两点所确定的直线方程写出来,然后结合图形考虑三角形内部区域应怎样表示。解:直线的斜率为:,其方程为可求得直线的方程为直线的方程为的内部在不等式所表示平面区域内,同时在不等式所表示的平面区域内,同时又在不等式所表示的平面区域内(如图)所以已知三角形内

4、部的平面区域可由不等式组表示说明:用不等式组可以用来平面内的一定区域,注意三角形区域内部不包括边界线典型例题六例6 已知,求的最大、最小值分析:令,目标函数是非线性的而可看做区域内的点到原点距离的平方问题转化为点到直线的距离问题解:由得可行域(如图所示)为,而到,的距离分别为和所以的最大、最小值分别是50和说明:题目中的目标函数是非线性的解决的方法类似于线性规划问题可做出图,利用图进行直观的分析典型例题七例7 设式中的变量、满足下列条件求的最大值分析:先作出不等式组所表示的可行域,需要注意的是这里的,故只是可行域内的整数点,然后作出与直线平等的直线再进行观察解:作出直线和直线,得可行域如图所示

5、解方程组得交点又作直线,平等移动过点时,取最大值,然而点不是整数点,故对应的值不是最优解,此时过点的直线为,应考虑可行域中距离直线最近的整点,即,有,应注意不是找距点最近的整点,如点为可行域中距最近的整点,但,它小于,故的最大值为34说明:解决这类题的关键是在可行域内找准整点若将线性目标函数改为非线性目标函数呢?典型例题八例8 设,式中的变量、满足试求的最大值、最小值分析:作出不等式组所表示的平面区域,本题的关键是目标函数应理解为可行域中的点与坐标原点的距离的平方解:作出直线,得到如图所示的可行域由得由得由得由图可知:当为点时,取最小值为2;当为点时,取最大值29说明:若将该题中的目标函数改为

6、,如何来求的最大值、最小值呢?请自己探求(将目标函数理解为点与点边线的斜率)典型例题九例9 设,;,用图表示出点的范围分析:题目中的,与,是线性关系可借助于,的范围确定的范围解:由得由,得做出不等式所示平面区域如图所示说明:题目的条件隐蔽,应考虑到已有的,的取值范围借助于三元一次方程组分别求出,从而求出,所满足的不等式组找出的范围典型例题十例10某糖果厂生产、两种糖果,种糖果每箱获利润40元,种糖果每箱获利润50元,其生产过程分为混合、烹调、包装三道工序,下表为每箱糖果生产过程中所需平均时间(单位:分钟)混合烹调包装153241每种糖果的生产过程中,混合的设备至多能用12机器小时,烹调的设备至

7、多只能用机器30机器小时,包装的设备只能用机器15机器小时,试用每种糖果各生产多少箱可获得最大利润分析:找约束条件,建立目标函数解:设生产种糖果箱,种糖果箱,可获得利润元,则此问题的数学模式在约束条件下,求目标函数的最大值,作出可行域,其边界 由得,它表示斜率为,截距为的平行直线系,越大,越大,从而可知过点时截距最大,取得了最大值解方程组 即生产种糖果120箱,生产种糖果300箱,可得最大利润19800元说明:由于生产种糖果120箱,生产种糖果300箱,就使得两种糖果共计使用的混合时间为1202300720(分),烹调时间512043001800(分),包装时间3120300660(分),这说

8、明该计划已完全利用了混合设备与烹调设备的可用时间,但对包装设备却有240分钟的包装时间未加利用,这种“过剩”问题构成了该问题的“松驰”部分,有待于改进研究典型例题十一例11甲、乙、丙三种食物的维生素、含量及成本如下表:甲乙丙维生素(单位/千克)600700400维生素(单位/千克)800400500成本(元/千克)1194某食物营养研究所想用千克甲种食物,千克乙种食物,千克丙种食物配成100千克的混合食物,并使混合食物至少含56000单位维生素和63000单位维生素(1)用、表示混合物成本(2)确定、的值,使成本最低分析:找到线性约束条件及目标函数,用平行线移动法求最优解解:(1)依题意:、满

9、足 成本(元)(2)依题意 作出不等式组所对应的可行域,如图所示联立作直线则易知该直线截距越小,越小,所以该直线过时,直线在轴截距最小,从而最小,此时750520400850元 千克,千克时成本最低典型例题十二例12 某工厂有甲、乙两种产品,按计划每天各生产不少于15,已知生产甲产品1需煤9,电力4,劳力3个(按工作日计算);生产乙产品1需煤4,电力5,劳力10个;甲产品每吨价7万元,乙产品每吨价12万元;但每天用煤最不得超过300吨,电力不得超过200,劳力只有300个问每天各生产甲、乙两种产品多少,才能既保定完成生产任务,又能为国家创造最多的财富分析:先设每天生产甲、乙两种产品的产量分别为

10、和,建立约束条件和目标函数后,再利用图形直观解题解:设每天生产甲产品,乙产品,总产值,依题意约束条件为:目标函数为约束条件表示的可行域是五条直线所围成区域的内部的点加上它的边线上的点(如图阴影部分)现在就要在可行域上找出使取最大值的点作直线,随着取值的变化,得到一束平行直线,其纵截距为,可以看出,当直线的纵截距越大,值也越大从图中可以看出,当直线经过点时,直线的纵截距最大,所以也取最大值解方程组得故当,时,(万元)答:第天生产甲产品20,乙产品24,这样既保证完成任务,又能为国家创造最多的财富428万元 说明:解决简单线性规划应用题的关键是:(1)找出线性约束条件和目标函数;(2)准确画出可行

11、域;(3)利用的几何意义,求出最优解如本例中,是目标函数的纵截距典型例题十三例13 有一批钢管,长度都是4000,要截成500和600两种毛坯,且这两种毛坯数量比大于配套,怎样截最合理?分析:先设出未知数,建立约束条件和目标函数后,再按求最优解是整数解的方法去求解:设截500的根,600的根,根据题意,得且作出可行域,如下图中阴影部分目标函数为,作一组平行直线,经过可行域内的点且和原点距离最远的直线为过的直线,这时由,为正整数,知不是最优解在可行域内找整点,使可知点,均为最优解答:每根钢管截500的2根,600的5根,或截500的3根,600的4根或截500的4根,600的3根或截500的5根

12、,600的2根或截500的6根,600的1根最合理说明:本题易出现如下错解:设截500的根,600的根,则即其中、均为整数作出可行域,如下图所示中阴影部分目标函数为,作一组平行直线,经过可行域内的点且和原点相距最远的直线为过点的直线先求点的坐标,解得,故,即,调整为,经检验满足条件,所以每根截500的2根,600的5根最合理本题解法错误主要是在作一组平行直线时没能准确作出,而得到经过可行域内的点且和原点距离最远的直线为过点的直线此错误可检验如下:如果直线通过点,它是经过可行域内的点且到原点距离最远的直线,那么,即由于,为整数,所以点不是最优解但在可行域内除点外,不可能再有其他点满足,只能在可行

13、域内找满足的点如果还没有整数点,则只能在可行域内找满足的整数点但我们知道,满足题意,这样,就出现了矛盾,从而判断解法错误,即通过点的直线并不是通过可行域内的点且和原点距离最远的直线典型例题十四例14 某工厂生产、两种产品,已知生产产品1要用煤9,电力4,3个工作日;生产产品1要用煤4,电力5,10个工作日又知生产出产品1可获利7万元,生产出产品1可获利12万元,现在工厂只有煤360,电力200,300个工作日,在这种情况下生产,产品各多少千克能获得最大经济效益分析:在题目条件比较复杂时,可将题目中的条件列表解:设这个工厂应分别生产,产品,可获利万元根据上表中的条件,列出线性约束条件为目标函数为

14、(万元)画出如图所示的可行域,做直线,做一组直线与平行,当过点时最大由得点坐标为把点坐标代入的方程,得(万元)答:应生产产品20,产品24,能获最大利润428万元说明:把实际问题转化为线性规划问题的难点在于找出题目中的所有线性约束条件同时本题的可行域形状较复杂,要注意分析目标函数的斜率和各边界斜率的关系:从而确定在何处取得最优解解应用题时还应注意设出未知量和做答这两个必要步骤典型例题十五例15 某公司每天至少要运送180货物公司有8辆载重为6的型卡车和4辆载重为10的型卡车,型卡车每天可往返4次,型卡车可往返3次,型卡车每天花费320元,型卡车每天花费504元,问如何调配车辆才能使公司每天花费

15、最少分析:设型卡车辆,型卡车辆问题转化为线性规划问题同时应注意到题中的,只能取整数解:设型卡车辆,型卡车辆,则即目标函数做如图所示的可行域,做直线在可行域中打上网格,找出,等整数点做与平行,可见当过时最小,即(元)说明:整数解的线性规划问题如果取最小值时不是整数点,则考虑此点附近的整数点典型例题十六例16 某工厂利用两种燃料生产三种不同的产品、,每消耗一吨燃料与产品、有下列关系:现知每吨燃料甲与燃料乙的价格之比为,现需要三种产品、各50吨、63吨、65吨问如何使用两种燃料,才能使该厂成本最低?分析:由于该厂成本与两种燃料使用量有关,而产品、又与这两种燃料有关,且这三种产品的产量也有限制,因此这

16、是一道求线性目标函数在线性约束条件下的最小值问题,这类简单的线性规划问题一般都可以利用二元一次不等式求在可行域上的最优解解:设该厂使用燃料甲吨,燃料乙吨,甲每吨元,则成本为因此只须求的最小值即可又由题意可得、满足条件作出不等式组所表示的平面区域(如图)由得由得作直线,把直线向右上方平移至可行域中的点时,最小成本为答:应用燃料甲吨,燃料乙吨,才能使成本最低说明:本题中燃料的使用不需要是整数吨,若有些实际应用问题中的解是整数解,又该如何来考虑呢?典型例题十七例17 咖啡馆配制两种饮料,甲种饮料每杯含奶粉9克、咖啡4克、糖3克,乙种饮料每杯含奶粉4克、咖啡5克、糖10克已知每天原料的使用限额为奶粉3600克、咖啡2000克、糖3000克如果甲种饮料每杯能获利0.7元,乙种饮料每杯能获利1.2元,每天在原料的使用限额内饮料能全部售出,每天应配制两种饮料各多少杯能获利最大?分析:这是一道线性规划的应用题,求解的困难在于从实际问题中抽象出不等式组只要能正确地抽象出不等式组,即可得到正确的答案解:设每天配制甲各饮料杯、乙种饮料杯可获得最大利润,利润总额为元由条件知:变量、满足作出不等式组所表示的可行域(如图)作直线,把直线向右上方平移至经过点的位置时,取最大值由方程组:得点坐标答:应每天配制甲种饮料200杯,乙种饮料240杯方可获利最大专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁