排列组合知识点与方法归纳.docx

上传人:飞****2 文档编号:15125608 上传时间:2022-05-11 格式:DOCX 页数:5 大小:58.89KB
返回 下载 相关 举报
排列组合知识点与方法归纳.docx_第1页
第1页 / 共5页
排列组合知识点与方法归纳.docx_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《排列组合知识点与方法归纳.docx》由会员分享,可在线阅读,更多相关《排列组合知识点与方法归纳.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上排列组合知识点与方法归纳一、 知识要点1. 分类计数原理与分步计算原理(1) 分类计算原理(加法原理):完成一件事,有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,在第n类办法中有mn种不同的方法,那么完成这件事共有N= m1+ m2+ mn种不同的方法。(2) 分步计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事共有N= m1 m2 mn种不同的方法。2. 排列(1) 定义从n个不同元素中取出m( )个元素的所有排列的个数,叫做从n个

2、不同元素中取出m个元素的排列数,记为 .(2) 排列数的公式与性质a) 排列数的公式: =n(n-1)(n-2)(n-m+1)= 特例:当m=n时, =n!=n(n-1)(n-2)321 规定:0!=1b) 排列数的性质:() =()() 3. 组合(1) 定义a) 从n个不同元素中取出 个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合b) 从n个不同元素中取出 个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号 表示。(2) 组合数的公式与性质a) 组合数公式: (乘积表示) (阶乘表示)特例: b) 组合数的主要性质:() () 4. 排列组合的区别与联系(

3、1) 排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。(2)注意到获得(一个)排列历经“获得(一个)组合”和“对取出元素作全排列”两个步骤,故得排列数与组合数之间的关系: 二、经典例题例1、某人计划使用不超过500元的资金购买单价分别为60、70元的单片软件和盒装磁盘,要求软件至少买3片,磁盘至少买2盒,则不同的选购方式是( )A .5种 B.6种 C. 7种 D. 8种解:注意到购买3片软件和2盒磁盘花去320元,所以,这里只讨论剩下的180元如何使用,

4、可从购买软件的情形入手分类讨论:第一类,再买3片软件,不买磁盘,只有1种方法;第二类,再买2片软件,不买磁盘,只有1种方法;第三类,再买1片软件,再买1盒磁盘或不买磁盘,有2种方法; 第四类,不买软件,再买2盒磁盘、1盒磁盘或不买磁盘,有3种方法;于是由分类计数原理可知,共有N=1+1+2+3=7种不同购买方法,应选C。例2、在中有4个编号为1,2,3,4的小三角形,要在每一个小三角形中涂上红、蓝、黄、白、黑五种颜色中的一种,使有相邻边的小三角形颜色不同,共有多少种不同的涂法?解:根据题意,有相邻边的小三角形颜色不同,但“对角”的两个小三角形可以是相同颜色,于是考虑以对角的小三角形1、4同色与

5、不同色为标准分为两类,进而在每一类中分步计算。第一类:1与4同色,则1与4有5种涂法,2有4种涂法,3有4种涂法,故此时有N1=544=80种不同涂法。第二类:1与4不同色,则1有5种涂法,4有4种涂法,2有3种涂法,3有3种涂法,故此时有N2=5433=180种不同涂法。综上可知,不同的涂法共有80+180=260种。例3、用数字0,1,2,3,4,5组成无重复数字4位数,其中,必含数字2和3,并且2和3不相邻的四位数有多少个?解:注意到这里“0”的特殊性,故分两类来讨论。第一类:不含“0”的符合条件的四位数,首先从1,4,5这三个数字中任选两个作排列有 种;进而将2和3分别插入前面排好的两

6、个数字中间或首尾位置,又有 种排法,于是由分步计数原理可知,不含0且符合条件的四位数共有=36个。第二类:含有“0”的符合条件的四位数,注意到正面考虑头绪较多,故考虑运用“间接法”:首先从1,4,5这三个数字中任选一个,而后与0,2,3进行全排列,这样的排列共有 个。其中,有如下三种情况不合题意,应当排险:(1)0在首位的,有 个;(2)0在百位或十位,但2与3相邻的,有 个(3)0在个位的,但2与3相邻的,有 个因此,含有0的符合条件的四位数共有 =30个于是可知,符合条件的四位数共有36+30=66个例4、某人在打靶时射击8枪,命中4枪,若命中的4枪有且只有3枪是连续命中的,那么该人射击的

7、8枪,按“命中”与“不命中”报告结果,不同的结果有( )A.720种 B.480种 C.24种 D.20种分析:首先,对未命中的4枪进行排列,它们形成5个空挡,注意到未命中的4枪“地位平等”,故只有一种排法,其次,将连中的3枪视为一个元素,与命中的另一枪从前面5个空格中选2个排进去,有 种排法,于是由乘法原理知,不同的报告结果菜有 种。例5、(1) ;(2)若 ,则n=;(3) ;(4)若 ,则n的取值集合为 ;(5)方程 的解集为 ;解:(1)注意到n满足的条件 原式= (2)运用杨辉恒等式,已知等式 所求n=4。(3)根据杨辉恒等式 原式= = = = (4)注意到这里n满足的条件n5且nN* 在之下,原不等式 由、得原不等式的解集为5,6,7,11(5)由 注意到当y=0时, 无意义,原方程组可化为 由此解得 经检验知 是原方程组的解。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁