数列极限的几种求法.doc

上传人:飞****2 文档编号:15125380 上传时间:2022-05-11 格式:DOC 页数:4 大小:191KB
返回 下载 相关 举报
数列极限的几种求法.doc_第1页
第1页 / 共4页
数列极限的几种求法.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《数列极限的几种求法.doc》由会员分享,可在线阅读,更多相关《数列极限的几种求法.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上数列极限的几种求法 一、定义法:数列极限的定义如下:设是一个数列,若存在确定的数a,对0 N0使当nN时,都有0n+1=0 取 则当时,有 =1二、单调有界法:首先我们介绍单调有界定理,其内容如下:在实数系中,有界的单调数列必有极限。证明:不妨设为有上界的递增数列。由确界原理,数列有上界,记为。以下证明a就是的极限。事实上,0,按上确界的定义,存在数列中某一项,使得 又由的递增性,当时有 ,这就证得 。同理可证有下界的递减数列必有极限,且其极限即为它的下确界。例2、证明数列收敛,并求其极限。证:,易见数列是递增的。现用数学归纳法来证明有上界。显然 。假设,则有,从而对

2、一切n 有,即有上界。由单调有界定理,数列有极限,记为a 。由于 ,对上式两边取极限得 ,即有 (a+1)(a-2)=0,解得 a=-1或a=2由数列极限的保不等式性,a=-1是不可能的,故有 三、运用两边夹法:迫敛法:(两边夹法)设收敛数列,都以a为极限,数列满足:存在正数当时有 (1) 则数列收敛且证: 由 分别存在正数与使得 当时有 (2) 当时有 (3)取 则当时不等式(1),(2),(3)同时成立即有 从而有 即证所得结果。 例3、求解: (1)=1由(1)式及两边夹法则 =1 。四、先求和再求极限:例4、求极限解: 五、先用放缩法再求极限:例5、求极限 解:记 则又由两边夹法则 =六、用施笃兹公式:首先我们介绍并证明施笃兹公式:施笃兹公式(stolz):设数列单调递增趋向于, (1)(可以为无穷)则例6、设 求: 解:由施笃兹公式专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁