《古典概型》教学设计及反思(共6页).docx

上传人:飞****2 文档编号:15124769 上传时间:2022-05-11 格式:DOCX 页数:6 大小:96.05KB
返回 下载 相关 举报
《古典概型》教学设计及反思(共6页).docx_第1页
第1页 / 共6页
《古典概型》教学设计及反思(共6页).docx_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《《古典概型》教学设计及反思(共6页).docx》由会员分享,可在线阅读,更多相关《《古典概型》教学设计及反思(共6页).docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上古典概型教学设计及反思陈青霞(茂名市, 化州市第一中学)一、教学目标:1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力.3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.二、重点与难点:正确理解掌握古典概型及其概率公式.三、学法与教学用具:与学生共同探讨,应用数学解决现实问题. 四、教

2、学过程设计1.形成概念(1)基本事件分析抛掷一枚质地均匀的硬币与骰子的试验结果的特点:相互之间是互斥关系;任何事件都可以表示为它们的和。从而归纳出基本事件的概念。例1 (1)从字母A、B、C、D中任意取出一个字母的试验中,有哪些基本事件?(2)任意取出两个不同字母呢?设计意图:使学生了解基本事件及列举法(画树状图是列举法的基本方法),列出所有基本事件,并为归纳古典概型提供更多背景。由学生举例:说出试验中的基本事件,并补充一些不等可能的背景:如在掷一枚质地均匀骰子(其中四个面分别标有1、2、3、4,另两个面标有5)的试验中,基本事件分别是什么?设计意图:让学生深入理解基本事件的意义,体会随机思想

3、,并能认识到基本事件之间有等可能,也有不等可能,这里可以借助图形(如图:用一个圆表示必然事件,若等可能就将它等分,否则不等分)来直观说明。 (2)古典概型问题1 在掷一枚质地均匀的硬币或骰子及例1的试验中,基本事件分别有几个,它们之间有什么共同特征?设计意图:借助具体试验中的基本事件,发现它们的共同特征,概括出古典概型的定义。师生活动:通过引导,使学生逐步归纳出它们间的共性:(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等。(等可能性)定义:我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。设计意图:使学生进一步理解古典概型概念中的两个特征

4、的含义。 师生活动:由学生来判断并说明理由。2.归纳公式问题2 我们知道:抛掷一枚质地均匀的硬币出现正面朝上的概率为,抛掷一枚质地均匀的骰子出现“1点”的概率为,由此能否得出古典概型中任何事件的概率计算公式? 设计意图:使学生从特殊问题入手(借助图形),归纳出古典概型概率计算公式。 师生活动:引导学生从特殊试验中发现任意两个基本事件都是互斥且等可能,从而可以得出任一基本事件的概率,又因为任何事件(包括必然事件)都可以表示为基本事件的和,利用概率的加法公式可以得出结果,并从中体会从特殊到一般归纳问题的思想。古典概型计算任何事件A的概率计算公式为:3.应用举例例2、单选题是标准化考试中常用的题型,

5、一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考察的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少? 分析:解决这个问题的关键,即讨论这个问题什么情况下可以看成古典概型。如果考生掌握或者掌握了部分考察内容,这都不满足古典概型的第2个条件等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才可以化为古典概型。 解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考生随机地选择一个答案是选择A,B,C,D的可能性是相等的。从而由古典概型的概率计算公式得:P(答对)=问题3

6、、在标准化考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么? 答:这是因为多选题选对的可能性比单选题选对的可能性要小;事实上,在多选题中,基本事件有15个,(A)(B)(C)(D)(A,B)(A,C)(A,D)(B,C)(B,D)(C,D)(A,B,C)(A,B,D)(A,C,D)(B,C,D)(A,B,C,D),假定考生不会做,在他随机选择任何答案是等可能的情况下,他答对的概率为例3、 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上

7、的点数之和是5的概率是多少?分析:如果我们只关注两个骰子出现的点数和,则有2,3,4,11,12这11种结果;如果我们关注两个不加识别骰子出现的点数,则有下表中的21种结果 如果我们把两个骰子标上记号1,2以便区分,由于1号骰子的结果都可以与2号骰子的任意一个结果配对,我们用一个“有序实数对”来表示组成同时掷两个骰子的一个结果(如表),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。从表中可以看出同时掷两个骰子的结果共有36种。值得关注的是第一、二种情形中的结果不是等可能的,不能直接运用古典概型公式计算事件的概率;(2)上面结果中,向上的点数之和为5的结果有4种:(1,4),(2,

8、3),(3,2),(4,1) (3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得P(A)=问题4:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗? 答:如果不标上记号,类似于(1,2)和(2,1)的结果将没有区别。这时,所有可能的结果为21种:和是5的结果有2个:(1,4)(2,3),所求的概率为P(A)=以上两种答案都是利用古典概型的概率计算公式得到的,为什么不同呢?这里关键是第二种解法中的基本事件不是等可能发生的,它不能利用古典概型公式来计算。4.总结提高(1)本节课学习的主要内容是什么?(2

9、)在应用古典概型解决概率问题时,应注意什么?(3)学习了古典概型后,你觉得有哪些收获?五、目标检测设计1.一枚硬币连掷3次,只有一次出现正面的概率为_.2.在20瓶饮料中,有2瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_.3.从1,2,3,9这9个数字中任取2个数字,(1)2个数字都是奇数的概率为_;(2)2个数字之和为偶数的概率为_.4.某人有4把钥匙,其中2把能打开门。现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是多少?,若试过的钥匙不扔掉,这个概率又是多少? 反思优点与不足本节课的教学通过提出问题,引导学生发现问题,经历思考交流概括归纳后得出古典概型的概念,由两个问题的提出进一步加深对古典概型的两个特点的理解;再通过学生观察类比推导出古典概型的概率计算公式。这一过程能够培养学生发现问题、分析问题、解决问题的能力。在学生小组讨论时指导得不够到位,应该赋予学生更多的时间,给他们更多的自主权。在今后的教学中,要在学生合作等方面加强指导,注意平时的培养与提高。努力做到教法与学法的最优组合,充分体现寓教于乐,寓学于乐。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁