化工毕业设计说明书二氧化碳的吸收再生设计.doc

上传人:飞****2 文档编号:15110550 上传时间:2022-05-11 格式:DOC 页数:46 大小:1.47MB
返回 下载 相关 举报
化工毕业设计说明书二氧化碳的吸收再生设计.doc_第1页
第1页 / 共46页
化工毕业设计说明书二氧化碳的吸收再生设计.doc_第2页
第2页 / 共46页
点击查看更多>>
资源描述

《化工毕业设计说明书二氧化碳的吸收再生设计.doc》由会员分享,可在线阅读,更多相关《化工毕业设计说明书二氧化碳的吸收再生设计.doc(46页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上摘要二氧化碳的吸收再生过程主要是由吸收、闪蒸和气提三部分组成。本次设计选用的脱碳剂是聚乙二醇二甲醚(NHD),属于物理吸收法。主要的设备是吸收塔和气提塔。在计算的过程中,首先根据所给的物料组成和工艺条件进行物料恒算和热量恒算,再进行塔设备的计算、校核及辅助设备的计算或选型。吸收段的计算结果如下:二氧化碳的脱除量21 921.8,NHD的用量1 515;塔底流出的富液带出的热量114 745 456.2kJ/h,溶液温度升高了6;塔径为2.4m,填料层高度为9.49m,塔压降为2 115.5Pa。解吸段的计算结果如下:闪蒸出的二氧化碳的量17 217.7,二氧化碳的回收

2、率为80%,溶液带出的热量88 771 324.7kJ/h,闪蒸的容积为2.1。气提出的二氧化碳的量4 567.7,氮气的用量9090;塔底流出的贫液带出的热量81 855 501.7kJ/h,溶液温度为27;上段塔径1.4m,下段塔径1.8m,填料层高度为5.7m,塔压降为2021.4Pa。关键词 吸收、闪蒸、气提ABSTRACTThe decarbon and regeneration of carbon dioxide process is primarily composed by three parts: absorption, flash vaporization and gas

3、stripping. This design uses polyethylene glycol dimethl ether (NHD) to decarbon, which is the physical absorption method. The main device is absorption column and stripper. In the process of calculation, firstly make material constant calculation and heat constant calculation, and then is the calcul

4、ation of tower equipment, checking and ancillary equipments calculation or selection. Absorption segments results are as follows: The amount of carbon dioxide removel is 21 921.8m/h and the amount of NHD is 1 515 m/h; the heat of liquid-rich flow from tower bottom is 114 745 456.2kJ/h and the temper

5、ature of solution rises 6; the tower diameter is 2.4m, the height of packing layer is 9.49m and the column pressure dropping is 2 115.5Pa. The desorption segments results are as follows: The amount of carbon dioxide flashes is 17 217.7m/h, the recovery rate of carbon dioxide is 80%, the heat brought

6、 out from solution is 88 771 324.7kJ/h and the volume of flash trough is 2.1 m. The amount of carbon dioxide stripped out is 4 567.7 m/h and the amount of nitwgen is 9 090 m/h; the heat of barren liquor from tower bottom is .7 kJ/h and the temperature of solution is 28; the upper column diameter is1

7、.4m, the lower column diameter is 1.8m and the column pressure dropping is 2 021.4Pa. Key Words: absorption,flash,stripping专心-专注-专业1总论1.1概述氨是重要的无机化工产品之一,在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。 合成氨的主要原料可分为固体

8、原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫、脱碳过程以及气体精制过程。CO2不是合成氨合成的原料气,故需要在净化阶段除去;但CO2在常温常压下是无色无臭气体,在常温下加压即可液化或固化,安全无毒,使用方便,加上其含量非常丰富,因此随着地球能源的日益紧张,现代工业的迅速发展,CO2的利用越来越受到人们的重视。许多国家都在研究把CO2作为“潜在碳资源”加以综合利用。它的应用可分为物理应用和化学应用。1)物

9、理应用:CO2作为人工降雨剂,可解决干旱地区的农田灌溉问题;在食品工业中作为冷冻剂,可保证鱼类、肉类、奶类的长期保鲜和低温运输,同时用作清凉饮料的添加剂。CO2在焊接工艺中作为绝缘剂和净化剂,用来提高焊接质量;作为萃取剂可以从香料和水果中提取香精,从咖啡里提取碱。另外,CO2还可用于医用局部麻醉、大型铸钢防泡剂和灭火剂。超临界液态CO2因其特殊的性质,还可用于贵重机械零件的清洗剂和超临界萃取剂。 2)化学应用:二氧化碳用于制造纯碱、轻质碳酸盐、化肥(碳酸氢铵、尿素)以及脂肪酸和水杨酸及其衍生物已有成熟的工艺,作为一种重要的有机合成原料,其应用也在不断研究开发。在催化剂存在下,它可以被氢还原成甲

10、烷、甲醇、甲醛、甲酸;它与H2一起代替甲醇参与芳烃的烷基化,得到包括加氢和甲基转移的产物;它与不饱和烃反应生成内酯、酸或酯类。另外,它还能与不饱和烃、胺类、环氧化合物及其它化合物发生二元、三元共聚反应,生成交联、接枝、嵌段等高分子聚合物,如聚氨基甲酸酯、聚碳酸酯、聚脲等。脱碳工艺分大的说,有湿法和干法两种。干法目前主要就是变压吸附,湿法目前就比较多,现比较常用的有MDEA、苯菲尔热钾碱、低温甲醇洗、碳丙、DEA、NHD等。在实际应用中,根据原料路线、生产工艺的不同进行选择。一般以煤为原料的选低温甲醇洗、碳丙、NHD较多,这两年选变压吸附的也不少(因为其CO2相对于氨较富余,比较节能);一般以天

11、然气为原料的选择MDEA、苯菲尔热钾碱,选变压吸附的较少(因为其CO2相对于氨较少,氨多碳少)。1.2文献综述用于CO2脱除的物理吸收方法很多,目前在工业上应用广泛,技术先进,投资省,能耗低的方法如下: 低温甲醇洗(Rectisol)法 常温甲醇洗(Amisol)法 MDEA法(物理化学吸收) Selexol法(国外常用) NHD法(国内新开发) 碳酸丙烯酯法常温甲醇洗对CO2不能选择吸收,而且甲醇消耗大,能耗较高,大型厂也没有使用经验,因此不宜采用。碳丙(PC),用于脱硫尚缺少大厂实践经验,用于脱CO2始于六十年代美国弗络系(Fcour)公司,但在国内不少氨厂中使用经验表明,其净化度差,溶剂

12、挥发损失较大,国内不少氨厂已转向其他净化方法,新建厂已很少采用。 MDEA和Selexol,均属国外技术,如使用须付给国外技术使用费和软件费。与低温甲醇法方法相比,均为国外引进技术,NHD为国内自行开发的技术,其吸收能力为碳丙的1.15倍,在工程设计中应优先考虑自有技术。这里用低温甲醇法和NHD两种方法相比较进行选定。(1)低温甲醇洗又称冷法净化工艺,是利用甲醇溶液在-60低温下洗涤变换气,溶解分离混合气中的CO2。低温下甲醇对CO2溶解度较大,因此循环溶液量小,耗电较少。其最主要的优点是净化度高,脱CO2能力强,一般的净化度CO2 10ppm。同时分离出足够尿素生产使用的CO2(纯度达98.

13、5%),它与液氮洗(-190深冷操作)配套,均在低温下操作,减少低温复热的过程,使流程简化、设备减少。 该法的不足之处是低温操作(-60),因此需要补充-40以下的低温冷量较大,此部分冷量折能耗较大,且甲醇溶剂蒸汽压高,挥发损失较大,因此,尤其是在甲醇再生蒸馏过程中蒸汽消耗较大。所以此法的冷、热能量消耗较高。低温甲醇洗法是在低温条件下操作,设备及配管、仪表、阀门材质要求高,不但造价高,而且国内不易解决,需要引进的范围大。该法工艺技术属国外工程公司专利技术,尽管国内已引进投产四套低温甲醇洗装置,有的国内工程公司也从事了一些配套工作,但真正设计这样大型装置还是要引进技术,因此技术费、引进设备费要高

14、于国内的技术和设备。另外甲醇本身有毒,挥发损失大,对人和环境均有污染。 (2) NHD净化工艺是国内八十年代以后开发成功的新技术,具有九十年代的水平,该工艺在常温(-510)条件下操作,设备材质大部分为碳钢,国内可以解决,价格也便宜。NHD工展出1,在P=3.5MPa压力下,溶液对CO2选择吸收能力强,溶液循环量不大,能耗较低。NHD溶剂物化性能稳定,蒸气压低,挥发损失小,无气味、无毒、不腐蚀、不分解。该工艺能耗低、消耗低、成本低。 NHD工艺技术是国内南京化工研究院开发,化工部第一设计院已在鲁南化肥厂期工程净化系统成功的设计了一套年产810万吨氨装置,现已投产三年多,运行十分稳定。在此基础上

15、还可以进一步优化设计,降低能耗,节省投资。从后面的技术比较可以清楚看出本技术的优越性。 (3)低温甲醇洗与NHD都是先脱硫后脱碳,脱硫后的溶剂采用热再生,脱CO2后的溶剂均采用汽提,因此二者流程是相似的。低温甲醇洗脱硫与脱碳是用同一个高的吸收塔分为两段,上段脱二氧化碳,下段脱硫,上塔吸收CO2的溶剂一部分去下塔脱S;NHD目前的流程是脱S和脱CO2溶剂分开各自成立系统循环,但低温甲醇洗额外增加一个甲醇水蒸馏塔。低温甲醇洗吸收温度是-60,NHD脱CO2吸收温度10,因此流程中换热部分低渐甲醇洗比NHD要复杂得多,总的来说NHD流程比低温甲醇洗流程简单,同时,值得注意的是工厂内如果没有空分装置,

16、则低温甲醇洗的气提用氮气将无法解决,而相反NHD可以用空气作气提剂。1.3设计任务的依据 我的设计是参照以下两方面制定的:1根据国家计委、国家科委及国产化办公室颁发的“七五”重点科技专题,引进技术消化吸收一条龙计划,采用NHD净化工艺,解决德士古煤浆气化技术的酸性气脱除,NHD净化技术合同编号7576。 2 NHD脱硫脱碳基础设计是根据一九九年八月,由南化公司研究院与化工部第一设计院签定的国产化一条龙子项合同引进技术消化吸收一条龙子项76,30万吨/年氨厂,NHD脱硫脱碳基础设计及 九年十月南化研究院第029号便函。1.4主要原材料及公用工程情况NHD是南京化学工业公司研究院近年来开发的一种优

17、良的物理吸收溶剂。它的主要组分为聚乙二醇二甲醚(国外称Selexol), 是一种有机溶剂。它具有沸点高,冰点低,蒸汽压低,对CO2气体有很强的选择吸收性,能适合于以煤(油)为原料,酸气分压较高的合成气等的气体净化,脱碳时需消耗少量冷量,属低能耗的净化方法。其化学稳定性、热稳定性好,挥发损失小,对碳钢设备亦无腐蚀性。洒落地下时可被生物降解,对人及生物环境无毒害,因此NHD气体净化技术为清洁生产工艺。 根据化工部“七五”国家重点科技攻关计划合成氨一条龙中“7576NHD净化技术的研究”合同,即采用NHD物理溶剂法脱除合成原料气中的硫化物和二氧化碳,并选择一个中型厂使用此项技术,然后提供大型厂使用,

18、“七五”为油头和煤头大型厂净化技术作准备,提出气液平衡数据和工业化基础设计。 1988年批准的山东鲁南化肥厂二期扩建工程为年产8万吨合成氨,造气部分引进德士古煤浆气化技术,其它部分由国内配套。由于煤气中硫化物和二氧化碳含量较高,经多方研究认可选用了NHD溶剂脱除合成气中二氧化碳的工艺,于1992年投产。 在气液平衡数据的测定和鲁化厂年产8万吨生产装置的基础上,提供了大型厂设计参数,进行此项年产30万吨合成氨NHD脱硫脱碳基础设计,条件是以德士古煤浆气化气经中低温耐硫变换后的气体为原料在2MPa压力下将含CO2 43%,的变换气净化至CO2 0.1%,每吨氨总能耗99万大卡,溶剂损耗0.5公斤南

19、化集团公司研究院开发的NHD净化技术,目前已在20多家氨厂、甲醇厂、醋酸厂的脱硫、脱碳装置上得到成功应用。作为一种典型的物理吸收过程,NHD技术适合于硫化物和二氧化碳含量高的煤制气净化,因此在化肥工业、煤化工、碳一化学领域具有广阔的前景,适合我国国情。2 生产方案的确定2.1脱碳及再生的方法一种净化气体的过程,指脱除混合气体中的二氧化碳,主要见于合成氨生产原料气或煤气的处理。脱除原料气中二氧化碳的方法,分为3类。(1) 物理吸收法 最早采用加压水脱除二氧化碳,经过减压将水再生。此法设备简单,但脱除二氧化碳净化度差,出口二氧化碳一般在2(体积)以下,动力消耗也高。近20年来开发有甲醇洗涤法、碳酸

20、丙烯酯法、聚乙二醇二甲醚法等,与加压水脱碳法相比,它们具有净化度高、能耗低、回收二氧化碳纯度高等优点,而且还可选择性地脱除硫化氢,是工业上广泛采用的脱碳方法。(2) 化学吸收法 具有吸收效果好、再生容易,同时还能脱硫化氢等优点。主要方法有乙醇胺法和催化热钾碱法。后者脱碳反应式为:为提高二氧化碳的吸收和再生速度,可在碳酸钾溶液中添加某些无机或有机物作活化剂,并加入缓蚀剂以降低溶液对设备的腐蚀。此外,还有氨水吸收法。在碳酸化法合成氨流程中,采用氨水脱除变换气中的二氧化碳,同时又将氨水加工成碳酸氢铵。(3) 物理化学吸收法 以乙醇胺和二氧化四氢噻吩(又称环丁砜)的混合溶液作吸收剂,称环丁砜法。因乙醇

21、胺是化学吸收剂,二氧化四氢噻吩是物理吸收剂,故此法为物理与化学效果相结合的脱碳方法。对于二氧化碳的再生,再生方法是NHD溶液的采用多级减压闪蒸和汽提法(加热汽提,惰性气汽提),一般若净化度要求不高,可采用多级减压闪蒸,若净化度要求高须采用惰性气汽提或加热汽提法。 对于合成氨原料气的脱碳及再生,我想用物理吸收法,这样在吸收二氧化碳后,只需经过闪蒸和气提,就可以实现二氧化碳的再回收,所用的吸收剂是NHD,气提吹扫的惰性气体选用氮气。2.2 NHD的脱碳原理2.2.1 NHD溶剂的物理性质 NHD溶剂的主要成分是聚乙二醇二甲醚,分子式为,式中n=28,平均分子量为250270。其物理性质(25)见表

22、1:表1 NHD的物理性质 2.2.2 计算的热力学基础 NHD溶剂在脱碳过程具有典型的物理吸收特征。 二氧化碳气体在工艺气体中分压不太高时,它在NHD溶剂中的平衡溶解度能较好地服从亨利定律: 当气相压力不高时,气相中各组分的分压可按道尔顿分压定律来描述: 在一定时,提高气相总压P,可溶气体在NHD溶液中的浓度,将增大,此时实行气体吸收过程。若气体i为二氧化碳,即为脱碳过程。反之,对已经溶解了大量二氧化碳的NHD溶剂,在温度及不变的情况下,降低气相总压,气体i从溶液中释放出来,形成闪蒸过程。闪蒸后的NHD溶液中还有少量的气体i,此时可往溶液中鼓入不含气体i的空气等惰性气体,继续降低气相中i的浓

23、度,可进一步降低溶液中i气体的浓度,达到溶液再生的目的,使之重复用于吸收。在二氧化碳气体与NHD溶剂之间进行传质过程的同时,氢气、氮气、甲烷、一氧化碳等气体与NHD溶剂吸收和解吸,但与二氧化碳气体的溶解度相比,这些气体在NHD溶剂中的溶解度要小得多(表2)表2 各种气体在NHD溶剂中的溶解度由于硫化氢和有机硫在前面的脱硫工段已经脱除了大部分,剩下的含量很少,故可以可作NHD只吸收二氧化碳,其它气体则为惰性气体。2.2.3计算的动力学基础通过对NHD溶剂吸收的传质研究,测得系统的扩散系数 系统的液膜传质系数与温度的关系式: NHD溶剂吸收的速率方程式可以写成: NHD溶剂吸收时的传质阻力主要是在

24、液相,对此物理溶解过程有: 在过程速率主要取决于在NHD液相中的扩散速率情况下,则上式可简化为 提高气相压力对无明显影响,但提高了,从而增大了吸收的推动力,也增大。可见,提高吸收压力对提高吸收速率是有利的。 若降低吸收温度,则一方面提高了H值(即提高了值),另一方面温度降低会使同样的液相浓度的平衡分压降低,吸收的推动力将增大。因此降低吸收温度,会极大地增加吸收速率。由于NHD溶剂吸收CO2是个液膜控制过程,因此在传质设备的选择和设计上,应采取提高液相湍动、气液逆流接触、减薄液膜厚度及增加相际接触面积等措施,以提高传质速率。2.3 脱碳及再生工艺参数的选定2.3.1 脱碳流程的选择 鉴于聚乙二醇

25、二甲醚脱除CO2是个典型的物理吸收过程,从1965年至今二十多年来,世界上几十个工业装置都采用吸收闪蒸气提的溶液循环过程,其中闪蒸操作可分为几级,逐级减压,高压闪蒸气中含有较多的氢气等有用的气体,一般让它返回系统予以回收,或做燃料用,低压闪蒸气含CO2可达到98%以上,常用之于尿素生产。经闪蒸、气提等手段再生的溶液充作半贫液进入脱碳塔中部,用以吸收进口气体中大部分CO2。进入脱碳塔顶的贫液来自热再生塔,由于这部分溶液的再生更彻底,温度也不高,因此降低了塔顶CO2 的平衡分压,保证了净化气中CO2含量小于0.3%的指标。NHD溶剂的饱和蒸汽很低,气相中带走的溶剂损耗极少。因此,不设溶剂洗涤回收装

26、置。2.3.2气提剂的选择本设计采用氮气作为气提气,因此,解决了溶液中硫化物的氧化析硫问题,改善了整个系统的可操作性,更是脱碳塔以预饱和CO2的溶液作贫液这种先进工艺的采用的先决条件。2.3.3塔型的选择NHD溶剂吸收二氧化碳的传质速度较慢,而且低温操作下的溶剂粘度大,流动性差。所以需要较大的气液传质界面。因此,我们选用了操作弹性较大的填料塔。在国外已经运转的聚乙二醇二甲醚气体净化工业装置,也多采用填料塔。同样,解吸过程也采用填料塔。 关于填料,可以根据发展情况,考虑选用5025碳钢阶梯环,也可使用5025玻纤增强聚丙烯阶梯环,但必须有低温长期使用的经验后方可使用。由于此次设计的温度不低,故为

27、选用聚丙烯阶梯环。2.3.4 脱碳再生操作温度的选定在吸收压力及进脱碳塔气的CO2浓度为定值时,二氧化碳在聚乙二醇二甲醚中的平衡溶解度随温度降低而升高。图1 吸收温度对脱碳气中CO2 含量的影响所以,降低脱碳温度,有利于加大吸收能力,减少溶液循环量和输送功率,也有利于提高净化度。更由于溶剂蒸汽压随温度降低而降低,可使系统的溶剂损耗减少,但低温下的溶剂粘度大,传质慢,增加了填料层高度和冷量损失。 据计算,脱碳负荷,填料层高度,吸收压力等条件均相同时,脱碳贫液温度为25时,净化度为0.2%,贫液温度降低到-1,净化度可达0.06%。在这里脱碳塔的操作温度选27。对于二氧化碳的再生,其操作温度选常温

28、,25。2.3.5 脱碳再生操作压力的选定 吸收的压力越高,越有利于物理溶剂的吸收能力的提高。以下是两套不同吸收压力的工业装置的运行数据: 从表中可以看出,2.7MPa的吸收压力明显优于1.7MPa。但合成氨厂的脱碳压力往往由压缩机型及流程总体安排所决定,只要脱碳系统的二氧化碳的分压达到0.4MPa以上,用NHD脱碳都可以获得良好的综合技术经济指标。所以,我这次设计吸收压力为1.75MPa,二氧化碳的分压为0.42MPa。 解吸的操作压力我选常压,即一个大气压,这样有利于设备的运行。2.3.6脱碳塔气液比的确定在其它工艺条件不变时二氧化碳净化度随着气液比的增大而降低。下表中模式数据显示了这种影

29、响。从该表中看到,在吸收再生条件均相近的情况下,吸收塔气液比越小,净化度越高。(吸收压力均在2.52.8MPa,吸收温度均在2634,气提空气/溶剂在18.223.6)。如表3所示:表 3序 号气液比溶剂吸收CO2能力m3(标)/m3CO2mol%进塔气净化气143.211.025.60.1249.812.926.20.4354.014.226.00.4462.016.227.21.4若要保证一定的CO2净化度,则气液比提高所产生的不利影响,需通过提高填料层高度来弥补。下表列出了在某工艺条件下,将CO2由进口的41.73%脱到0.5%的对比数据。如表4所示:表 4序号ABCDEFGH气液比80

30、.778.984.273.769.266.063.561.9脱碳能力m3(标)/m363.555.744.734.429.929.226.825.2净化度CO2%0.0200.0160.7130.0860.0530.0200.0170.0152.3.7 冷凝器的位置及选定 脱碳操作温度接近于常温,所以进塔溶液需要冷冻措施。我们选用液氨为冷源,使溶液温度保持在25左右。 根据国外同类型运转工厂的经验,冷凝器的位置有两种,一种冷却贫液,一种是冷却富液。两种方法各有千秋。用冷凝器冷却贫液的有美国奥马哈氨厂,西德的一些工厂以及TVA的有关报价材料。它的优点是,控制进脱碳塔贫液温度比较直接,经冷却后的低

31、温管道较短,其它设备操作温度均稍高,这样有利于气提过程及减少冷量损失。缺点是传热温差小,溶剂损耗大。另一种冷却富液,即冷却刚出脱碳塔的富液。采用这种冷凝器位置的有加拿大希尔哥顿公司氨厂,加拿大工业公司氨厂等。它的优点是传热温差大,有利于减少传热面积。(因为整个脱碳系统中,富液温度最高)整个脱碳系统操作温度都较低,溶剂损耗少。然而带来的缺点是不利于解吸过程,低温管道设备多,冷量损失就大。 本次设计脱碳系统的半贫液冷却采用第一种位置,贫液是由热再生塔来,经溶液换热后再用氨冷却,属于第一种位置。2.3.8腐蚀及材料选择NHD溶剂本身无腐蚀性,并能在有些原来的腐蚀的脱碳系统内抑制腐蚀,这是因为NHD溶

32、剂吸收了水分,减轻了CO2对碳钢的腐蚀。但在高温和有二氧化碳和水蒸汽存在的情况下,对设备有一定的腐蚀作用。因此,脱碳系统的大部分设备脱碳塔、气提塔,闪蒸槽等都可用低合金钢钢制作,仅部分内件,如除沫器,液体分布器,填料支承及压板等,采用不锈钢材料。 管道间垫片可用石棉,机械密封材料可选用硅橡胶,聚丙烯和聚四氟乙烯,一般的高分子材料慎用。 NHD溶剂是油漆的溶剂,管道和设备内表面不能使用涂料,偶尔接触NHD溶剂的设备防腐涂层可用环氧树脂漆。3 脱碳再生生产流程说明 脱碳工艺流程如图3.1所示。 图 3.11换热器 2、6、13气液分离器 3、7风机 4吸收塔 6、7、11溶液泵 8、14气体缓冲罐

33、 9气提塔 12闪蒸槽变换气加压至1.75MPa后先经过分离器分离夹带雾沫后,进入板翅式综合气体换热器,与净化气、高压闪蒸气、低压闪蒸气换热降温,经进塔分离器分离,进入脱碳塔,气体由下向上与从塔顶喷淋下来的溶液逆流接触,混合气体的二氧化碳被溶剂吸收,脱除到0.3%以下,净化气经雾沫分离器分离掉夹带的少量雾沫后,进入翅式气体换热器回收冷量,经装有EAC-2的精脱硫罐脱除掉残余总硫,加压送联醇系统。 从脱碳塔底部出来的NHD富液,经减压后进入闪蒸槽,将大部分溶剂中吸收的二氧化碳气体闪蒸解吸出来,送尿素合成塔。自闪蒸槽底部出来的溶剂,经富液泵提压后送至气提塔顶部。溶剂自塔顶喷淋下来,与从下部送入的氮

34、气逆流接触,进行传质换热,并将溶液中残留的二氧化碳气提出来。出气提塔的解吸气经分离器回收少量夹带NHD雾沫后,入空气冷却器,与罗茨风机送来的空气进行间接热交换,之后,解吸气放空。 从气提塔出来的贫液则经泵加压和流量调节后,进入氨冷管间,被液氨蒸发器冷却后再送入脱碳塔顶部去吸收原料气中的二氧化碳,如此循环使用,当循环溶剂吸水超标后,可部分送脱水塔进行脱水处理,脱水后的溶剂经溶液换热降温后送至气提塔。 4 吸收过程的工艺计算已知条件:进口气体组成:组成CO2COH2N2H2SCH4O2合 计含量/%24.150.355.7119.160.050.30.33100.00工艺参数: 原料气压力:常压;

35、进脱碳塔气体温度:20;脱碳塔操作压力:P=1.75MPa;脱碳塔操作温度:t=27;进脱碳塔溶液含二氧化碳的量:0.001进脱碳塔溶液温度:25;闪蒸槽操作压力:常压;闪蒸槽操作温度:25; 进气提塔氮气温度:30; 气体塔操作压力:常压; 气体塔操作温度:25; 年工作日330天,其余数据根据生产实际情况自定。设计目标:出脱碳塔净化气组分中CO2含量;再生气组分中CO2%回收率;脱碳塔压差;气提塔压差。4.1物料恒算原料气在通过吸收塔的过程中,二氧化碳气体不断被吸收,故气体总量沿塔高而变,液体也因其中不断溶入二氧化碳组分,其含量也沿塔高而变,但是塔的惰性气体量和溶剂量是不变的。进塔气的的流

36、量 ,其平均摩尔质量为进塔气中的流量: 惰性气体的流量:进塔气的摩尔流量:则原料气中各组分的物质的量为: 其中惰性气体的物质的量为:进塔气中的摩尔比为:出塔气中的摩尔比为:进塔溶液中的摩尔比为:塔操作压力下的分压为: 以煤为原料的变换气中在25,0.42MPa下在碳酸丙烯的溶解度为13.8(标)。NHD在同样条件下的溶解度是碳酸丙烯的1.15倍,则在25,0.42MPa下NHD的溶解度为(标) 净化气的流量为: 净化气摩尔流量为:净化气中的流量为: 则被NHD吸收的流量为: 被NHD吸收的摩尔流量为:则吸收所需的NHD的量为:其摩尔流量为:取NHD中的杂质含量为0.5%,则真实所需的NHD为:

37、其摩尔流量为: 根据全塔的物料恒算,求出在液相中的摩尔比为其摩尔分数为: 从塔底流出的富液量为:净化气各组分含量由求出,列表4.1表 4.1组成CO2COH2N2H2SCH4O2合 计含量%0.30.473.2325.180.060.40.43100.004.2热量恒算全塔的热量平衡式为: 4.2.1原料气带入的热量当气体压力不高时,有其中气体的比热容,而,查将数据代入可得气体中各组分的比热容,列表4.2表 4.2 组分CO2COH2N2H2SCH4O28.82311.4297.31811.28321.96210.02110.787 原料气带入的热量为:4.2.2单位时间内气体的溶解热 单位时

38、间内气体的溶解热为 式中为二氧化碳溶于NHD的溶解热, 4.2.3进塔溶液带入的热量进塔溶液带入的热量 式中为NHD的比热容, 4.2.4净化气带出的热量由工程上操作可知气体出塔温度与操作温度相同,则 其中气体的比热容,而, 查将数据代入可得气体中各组分的比热容,列表4.3 表 4.3组分CO2COH2N2H2SCH4O28.94912.3676.89512.14723.06910.8268.348 净化气带出的热量为: 4.2.5塔底富液带出的热量塔底富液带出的热量 式中,为单位时间已溶气体的焓,则由可以求出富液带出的热量为富液的温度为: 溶液温度升高了6。4.3吸收塔的工艺设计4.3.1

39、塔径及气速的计算塔内气体的密度 将进塔气换成操作压力下的体积流量,中压以下由可知,则 塔内气体的质量流量为塔内气体的质量流量为采用埃克特通用关联图计算泛点气速,其横坐标为 查图得纵坐标为 27时, 水的密度, 则 查表知:DN50塑料阶梯环,解得 拟定操作空塔气速 由 圆整取塔径为2.4m。校核: 故所选填料规格适宜。取 最小喷淋密度操作喷淋密度符合生产要求。此时,实际操作空塔气速 泛点率为 经校核D=2.4m符合要求。 4.3.2填料层高度的计算取纯溶剂的流量为最小流量的1.8倍,则 由 的吸收因数 气相总传质单元数为: NHD的扩散系数 溶解度系数H与相平衡常数m的转换: NHD系统的液膜

40、扩散系数与温度的关系为 对于物理的溶解过程,有,在该系统有 气相总体积吸收系数为气相总传质单元高度为:填料层高度为:4.3.3塔厚度的计算 本塔选用GB6654.16MnR低合金钢,查得t=27时的许用压力,低合金钢单面腐蚀裕度取,采用双面对接焊缝,局部探伤,取,则筒体的设计厚度为 圆整后取18mm,负偏差, 则塔体的名义厚度塔体的有效厚度4.3.4塔压降的计算在计算塔径时,由Ecken关联图可知其横坐标为0.241,填料的降压因子,则纵坐标由Ecken关联图可知填料,则 全塔的填料层降压为4.3.5辅助设备的计算和选型 吸收塔气体的进料管管径进塔气流速为 查得气体在中压下的流速为15m/s,

41、则管径查表选用的无缝钢管,其内径 重新核算气体在管内的流速 液体输送管管径进液管选用碳钢管,则其管径其雷诺数故为湍流。查表选用钢管,出塔液管径选钢管。填料层压板的计算填料层设置压板的必要条件为 其中为最大气速,这里取空塔气速0.625m/s则 故需要加压板,塑料填料选用固定式压板,压板的开孔面积等于填料的孔率,则 开孔的缝隙取填料直径的0.6,则 支撑板的选取 支撑板的开孔面积为填料的孔隙率,为,这里取100%塔截面。液体分布器这里选用盘式分布器,盘上开有的小孔和直径小于15mm的溢流管,发布盘直径为塔直径的0.6,则盘中的液面高度为塔径的1/6,则开孔数 个喷射器的设计1)喷嘴的个数 ,式中

42、为每个喷射器的溶液量,这里取,则个2)喷嘴孔径 ,式中为喷嘴处的流速,通常,这里取22m/s,则 3)喷嘴入口收缩管长,式中为喷射入口收缩角,取则 取喷嘴喉管长,则喷嘴管总长为4)裙座高度的选择对于该塔,裙座体材料采用16MnR,高度为3m,厚度为30mm,并开设人孔,顶部有50mm的排气孔,在底部开设排液孔。裙座上端与塔体的底封头焊接,下端与基础环、筋板焊接。4.3.6塔体的强度校核水压试验16MnR屈服极限为,则试验压力 则水压试验合格。封头设计封头厚度取筒体厚度,直边高度取40mm。取长短轴比值为2的椭圆封头,则短轴高 , 封头的最大允许工作压力 则封头的设计合格。塔设备的各种载荷计算1)塔体的质量载荷a塔体和裙座的质量查表可知,对于2.4m的塔径,壁厚18mm,1m高的筒节钢板的质量为1080kg;经塔估算可得塔高为19.32m,故塔体和裙座的质量为 b内件的质量查表可知,塔内件的质量为,塔体截面积则内件的质量 c平台扶梯的质量查表可知,平台的质量为,按算平台的质量 查表可知,扶梯的质量为,则扶梯的质量d填料的质量查表可知,聚丙烯阶梯环的堆积密度为,填料的体积 则填料的质量 操作过程的溶液质量 其它构件的质量按5000kg算设备操作时的总质量2)风载荷和风弯矩的校核a风载荷风载荷的计算公式:由于塔高超过10m,故需分两段计算,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁