学而思小学奥数知识点梳理解读(共17页).doc

上传人:飞****2 文档编号:15106620 上传时间:2022-05-11 格式:DOC 页数:17 大小:84KB
返回 下载 相关 举报
学而思小学奥数知识点梳理解读(共17页).doc_第1页
第1页 / 共17页
学而思小学奥数知识点梳理解读(共17页).doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《学而思小学奥数知识点梳理解读(共17页).doc》由会员分享,可在线阅读,更多相关《学而思小学奥数知识点梳理解读(共17页).doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上学而思小学奥数知识点梳理概述一、 计算1 四则混合运算繁分数 运算顺序 分数、小数混合运算技巧一般而言: 加减运算中,能化成有限小数的统一以小数形式; 乘除运算中,统一以分数形式。 带分数与假分数的互化 繁分数的化简 2 简便计算凑整思想 基准数思想 裂项与拆分 提取公因数 商不变性质 改变运算顺序 运算定律的综合运用 连减的性质 连除的性质 同级运算移项的性质 增减括号的性质 变式提取公因数形如:1212. (. n n a b a b a b a a a b =3 估算求某式的整数部分:扩缩法 4 比较大小 通分a. 通分母 b. 通分子 跟“中介”比 利用倒数性

2、质若111a b c ,则cba.。形如:m m m n n n ,则n n nm m m 。 5 定义新运算6 特殊数列求和运用相关公式:(21321+=+n n n (622+=+n n n n(21n a n n n n =+=+ (422333+=+=+n n n n =abc abc abcabc (b a b a b a -+=-221+2+3+4(n-1)+n+(n-1)+4+3+2+1=n2二、 数论1 奇偶性问题奇奇=偶 奇奇=奇 奇偶=奇 奇偶=偶 偶偶=偶 偶偶=偶2 位值原则形如:abc =100a+10b+c 4 整除性质 如果c|a、c|b,那么c|(ab 。 如果

3、bc|a,那么b|a,c|a。 如果b|a,c|a,且(b,c )=1,那么bc|a。 如果c|b,b|a,那么c|a. a 个连续自然数中必恰有一个数能被a 整除。5 带余除法一般地,如果a 是整数,b 是整数(b 0), 那么一定有另外两个整数q 和r ,0r b, 使得a=bq+r当r=0时,我们称a 能被b 整除。当r 0时,我们称a 不能被b 整除,r 为a 除以b 的余数,q 为a 除以b 的不完全商(亦简称为商)。用带余数除式又可以表示为a b=qr, 0r b a=b q+r 6. 唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即n= p11a p22a .pk

4、ak7. 约数个数与约数和定理设自然数n 的质因子分解式如n= p11a p22a .pkak那么:n 的约数个数:d(n=(a1+1(a2+1.(ak+1 n 的所有约数和:(1+P1+P12+p11a )(1+P2+P22+p22a )(1+Pk+Pk2+pkak)8. 同余定理 同余定义:若两个整数a ,b 被自然数m 除有相同的余数,那么称a ,b 对于模m 同余,用式子表示为a b(mod m若两个数a ,b 除以同一个数c 得到的余数相同,则a ,b 的差一定能被c 整除。 两数的和除以m 的余数等于这两个数分别除以m 的余数和。 两数的差除以m 的余数等于这两个数分别除以m 的余

5、数差。 两数的积除以m 的余数等于这两个数分别除以m 的余数积。9完全平方数性质平方差: A2-B 2=(A+B)(A-B ),其中我们还得注意A+B, A-B同奇偶性。约数:约数个数为奇数个的是完全平方数。 约数个数为3的是质数的平方。质因数分解:把数字分解,使他满足积是平方数。 平方和。10孙子定理(中国剩余定理) 11辗转相除法12数论解题的常用方法:枚举、归纳、反证、构造、配对、估计三、 几何图形1 平面图形多边形的内角和N 边形的内角和=(N-2 180 等积变形(位移、割补) 三角形内等底等高的三角形 平行线内等底等高的三角形 公共部分的传递性 极值原理(变与不变)三角形面积与底的

6、正比关系 S 1S 2 =ab ; S 1S 2=S4S 3 或者S 1S 3=S2S 4 相似三角形性质(份数、比例) a b c hA B C H= ; S 1S 2=a2A 2 S 1S 3S 2S 4= a2b 2ab ab ; S=(a+b)2 燕尾定理 例如弦图中长短边长的关系。 组合图形的思考方法 化整为零 先补后去 正反结合2 立体图形规则立体图形的表面积和体积公式 不规则立体图形的表面积整体观照法 体积的等积变形水中浸放物体:V 升水=V物 测啤酒瓶容积:V=V空气+V水三视图与展开图最短线路与展开图形状问题染色问题几面染色的块数与“芯”、棱长、顶点、面数的关系。四、 典型应

7、用题1 植树问题开放型与封闭型 间隔与株数的关系2 方阵问题外层边长数-2=内层边长数(外层边长数-1)4=外周长数 外层边长数2-中空边长数2=实面积数3 列车过桥问题车长+桥长=速度时间车长甲+车长乙=速度和相遇时间 车长甲+车长乙=速度差追及时间列车与人或骑车人或另一列车上的司机的相遇及追及问题 车长=速度和相遇时间 车长=速度差追及时间 4 年龄问题差不变原理 5 鸡兔同笼假设法的解题思想 6 牛吃草问题原有草量=(牛吃速度-草长速度)时间 7 平均数问题 8 盈亏问题分析差量关系 9 和差问题 10 和倍问题 11 差倍问题 12 逆推问题还原法,从结果入手13 代换问题列表消元法等

8、价条件代换五、 行程问题1 相遇问题路程和=速度和相遇时间2 追及问题路程差=速度差追及时间3 流水行船顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)2水速=(顺水速度-逆水速度)24 多次相遇线型路程: 甲乙共行全程数=相遇次数2-1环型路程: 甲乙共行全程数=相遇次数其中甲共行路程=单在单个全程所行路程共行全程数5 环形跑道6 行程问题中正反比例关系的应用路程一定,速度和时间成反比。速度一定,路程和时间成正比。时间一定,路程和速度成正比。7 钟面上的追及问题。 时针和分针成直线; 时针和分针成直角。8 结合分数、工程、和差问题的一些类型。9 行程问题时常运用“时光倒流

9、”和“假定看成”的思考方法。六、 计数问题1 加法原理:分类枚举2 乘法原理:排列组合3 容斥原理: 总数量=A+B+C-(AB+AC+BC+ABC 常用:总数量=A+B-AB4 抽屉原理:至多至少问题5 握手问题在图形计数中应用广泛 角、线段、三角形, 长方形、梯形、平行四边形 正方形七、 分数问题1 量率对应2 以不变量为“1”3 利润问题4 浓度问题倒三角原理 例:5 工程问题 合作问题 水池进出水问题6 按比例分配八、 方程解题1 等量关系 相关联量的表示法例: 甲 + 乙 =100甲乙=3 x 100-x3x x 解方程技巧恒等变形2 二元一次方程组的求解代入法、消元法3 不定方程的

10、分析求解以系数大者为试值角度4 不等方程的分析求解九、 找规律周期性问题 年月日、星期几问题 余数的应用数列问题 等差数列通项公式 a n =a1+(n-1d求项数: n=11n a a d -+求和: S=1( 2n a a n + 等比数列 求和: S=1(1 1n a q q - 裴波那契数列策略问题 抢报30 放硬币最值问题 最短线路a. 一个字符阵组的分线读法b. 在格子路线上的最短走法数 最优化问题a. 统筹方法b. 烙饼问题十、 算式谜1 填充型2 替代型3 填运算符号4 横式变竖式5 结合数论知识点十一、 数阵问题1 相等和值问题2 数列分组知行列数,求某数知某数,求行列数3

11、幻方奇阶幻方问题:杨辉法 罗伯法偶阶幻方问题:双偶阶:对称交换法单偶阶:同心方阵法十二、 二进制1 二进制计数法 二进制位值原则 二进制数与十进制数的互相转化 二进制的运算2 其它进制(十六进制)十三、 一笔画1 一笔画定理:一笔画图形中只能有0个或两个奇点;两个奇点进必须从一个奇点进,另一个奇点出;2 哈密尔顿圈与哈密尔顿链3 多笔画定理笔画数=2奇点数十四、 逻辑推理1 等价条件的转换2 列表法3 对阵图竞赛问题,涉及体育比赛常识十五、 火柴棒问题1 移动火柴棒改变图形个数2 移动火柴棒改变算式,使之成立十六、 智力问题1 突破思维定势2 某些特殊情境问题十七、 解题方法(结合杂题的处理)1 代换法2 消元法3 倒推法4 假设法5 反证法6 极值法7 设数法8 整体法9 画图法10 列表法11 排除法12 染色法13 构造法14 配对法15 列方程方程不定方程不等方程另外补充说明:在华校课本六年级中有“棋盘上的数学”三讲,其实是找规律类型,知识点涉及棋盘格,几何,数论等,属于综合性问题。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁