高数二期末复习题及答案(共9页).doc

上传人:飞****2 文档编号:15094018 上传时间:2022-05-10 格式:DOC 页数:9 大小:546.50KB
返回 下载 相关 举报
高数二期末复习题及答案(共9页).doc_第1页
第1页 / 共9页
高数二期末复习题及答案(共9页).doc_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《高数二期末复习题及答案(共9页).doc》由会员分享,可在线阅读,更多相关《高数二期末复习题及答案(共9页).doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上高等数学(二)期末复习题一、选择题1、若向量与向量平行,且满足,则( ) (A) (B) (C) (D). 2、在空间直角坐标系中,方程组代表的图形为 ( )(A)直线 (B) 抛物线 (C) 圆 (D)圆柱面 3、设,其中区域由所围成,则( ) (A) (B) (C) (D) 4、设,则 ( ) (A)9 (B) 6 (C)3 (D) 5、级数 的敛散性为 ( )(A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定6、二重积分定义式中的代表的是( )(A)小区间的长度(B)小区域的面积(C)小区域的半径(D)以上结果都不对 7、设为连续函数,则二次

2、积分等于 ( )(A) (B) (C) (D)8、方程表示的二次曲面是 ( )(A)抛物面 (B)柱面 (C)圆锥面 (D)椭球面 9、二元函数在点可微是其在该点偏导数存在的( ).(A) 必要条件 (B) 充分条件 (C) 充要条件 (D) 无关条件10、设平面曲线L为下半圆周 则曲线积分( )(A) (B) (C) (D) 11、若级数收敛,则下列结论错误的是 ( )(A)收敛 (B) 收敛 (C)收敛 (D) 收敛12、二重积分的值与 ( ) (A)函数f及变量x,y有关; (B) 区域D及变量x,y无关; (C)函数f及区域D有关; (D) 函数f无关,区域D有关。13、已知且 则x

3、= ( ) (A) -2 (B) 2 (C) -3 (D)314、在空间直角坐标系中,方程组代表的图形为( ) (A)抛物线 (B) 双曲线 (C)圆 (D) 直线15、设,则= ( )(A) (B) (C) (D)16、二重积分交换积分次序为 ( )(A) (B) (C) (D) 17、若已知级数收敛,是它的前项之和,则此级数的和是( )(A) (B) (C) (D) 18、设为圆周:,则曲线积分的值为( ) (A) (B) 2 (C) (D) 二、填空题 1、 2、二元函数 ,则 3、积分的值为 4、若 为互相垂直的单位向量, 则 5、交换积分次序 6、级数的和是 7、 8、二元函数 ,则

4、 9、设连续,交换积分次序 10、设曲线L: ,则 11、若级数收敛,则 12、若则 13、 14、已知且 则x = 15、设则 16、设连续,交换积分次序 17、 18、设为圆周:,则曲线积分的值为 三、解答题1、(本题满分12分)求曲面在点处的切平面方程。2、(本题满分12分)计算二重积分,其中由轴及开口向右的抛物线和直线围成的平面区域。3、(本题满分12分)求函数的全微分。4、(本题满分12分)证明:函数在点(0,0)的两个偏导数存在,但函数在点(0,0)处不连续。5、(本题满分10分)用比较法判别级数的敛散性。6、(本题满分12分)求球面在点处的法线方程。 7、(本题满分12分)计算,

5、其中。8、(本题满分12分)力的作用下,质点从点沿 移至点,求力 所做的功。9、(本题满分12分)计算函数的全微分。10、(本题满分10分)求级数的和。11、(本题满分12分)求球面在点处的切平面方程。12、(本题满分12分)设,求。13、(本题满分12分)求,其中是由,在第一象限内所围成的区域。14、(本题满分12分)一质点沿曲线从点(0,0,0)移动到点(0,1,1),求在此过程中,力所作的功。15、(本题满分10分)判别级数 的敛散性。高等数学(二)期末复习题答案一、选择题1、A 2、C 3、D 4、A 5、B 6、D 7、B 8、A 9、B 10、C 11、B 12、C 13、B 14

6、、B 15、B 16、A 17、C 18、D二、填空题1、 2 ;2、 ;3、; 4、 0 ;5、;6、 7、 ; 8、 ;9、 ;10、 0 ;11、 -1 ; 12、 13、; 14、 3 ;15、 ;16、;17、;18、 0 三、解答题1、(本题满分12分)解:设 则 , , 对应的切平面法向量 代入(1,2,0)可得法向量:(4,2,0) 则切平面方程: 或 2、(本题满分12分)解 : 3、(本题满分12分)解:因为 , , 所以 4、(本题满分12分)解: 同理 所以函数在(0,0)点两个偏导数存在。 不存在 因此函数在(0,0)点不连续 5、(本题满分10分)解: , 而 是收敛的等比级数 原级数收敛 6、(本题满分12分)解:设 则 , , 对应的法向量 代入可得法向量:(2,4,6) 则法线方程: 7、(本题满分12分)解: 8、(本题满分12分) 9、(本题满分12分), 10、(本题满分10分)解: 所以级数的和为1 11、(本题满分12分)解:设 则 , , 对应的切平面法向量 代入可得法向量:(2,4,6) 则切平面方程: 或 12、(本题满分12分)解:因为 所以 13、(本题满分12分)解:令,则,所以 14、(本题满分12分) 15、(本题满分10分)解: 设 于是 故发散。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁