《量子力学导论习题答案(曾谨言)(共11页).doc》由会员分享,可在线阅读,更多相关《量子力学导论习题答案(曾谨言)(共11页).doc(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上第三章一维定态问题3.1)设粒子处在二维无限深势阱中,求粒子的能量本征值和本征波函数。如 ,能级的简并度如何?解:能量的本征值和本征函数为若,则 这时,若,则能级不简并;若,则能级一般是二度简并的(有偶然简并情况,如与)3.2)设粒子限制在矩形匣子中运动,即求粒子的能量本征值和本征波函数。如,讨论能级的简并度。解:能量本征值和本征波函数为,当时,时,能级不简并;三者中有二者相等,而第三者不等时,能级一般为三重简并的。三者皆不相等时,能级一般为6度简并的。如 3.3)设粒子处在一维无限深方势阱中,证明处于定态的粒子讨论的情况,并于经典力学计算结果相比较。证:设粒子处于第
2、n个本征态,其本征函数. (1) (2)在经典情况下,在区间粒子除与阱壁碰撞(设碰撞时间不计,且为弹性碰撞,即粒子碰撞后仅运动方向改变,但动能、速度不变)外,来回作匀速运动,因此粒子处于范围的几率为,故 , (3), (4)当时,量子力学的结果与经典力学结果一致。3.4)设粒子处在一维无限深方势阱中,处于基态,求粒子的动量分布。解:基态波函数为 , (参P57,(12)动量的几率分布3.5)设粒子处于半壁高的势场中 (1)求粒子的能量本征值。求至少存在一条束缚能级的体积。解:分区域写出: (2)其中 (3)方程的解为 (4)根据对波函数的有限性要求,当时,有限,则当时,则于是 (5)在处,波函
3、数及其一级导数连续,得 (6)上两方程相比,得 (7)即 (7) 若令 (8)则由(7)和(3),我们将得到两个方程:(10)式是以为半径的圆。对于束缚态来说,结合(3)、(8)式可知,和都大于零。(10)式表达的圆与曲线在第一象限的交点可决定束缚态能级。当,即,亦即 (11)时,至少存在一个束缚态能级。这是对粒子质量,位阱深度和宽度的一个限制。36)求不对称势阱中粒子的能量本征值。解:仅讨论分立能级的情况,即,当时,故有由在、处的连续条件,得 (1)由(1a)可得 (2)由于皆为正值,故由(1b),知为二,四象限的角。因而 (3)又由(1),余切函数的周期为,故由(2)式, (4)由(3),
4、得 (5)结合(4),(5),得 或 (6)一般而言,给定一个值,有一个解,相当于有一个能级: (7)当时,仅当 才有束缚态 ,故给定时,仅当 (8)时才有束缚态(若,则无论和的值如何,至少总有一个能级)当给定时,由(7)式可求出个能级(若有个能级的话)。相应的波函数为:其中 37)设粒子(能量)从左入射,碰到下列势阱(图),求阱壁处的反射系数。解:势阱为 在区域上有入射波与反射波,在区域上仅有透射波。故由,得 。由,得 。从上二式消去c, 得 。反射系数 将代入运算,可得38)利用Hermite多项式的递推关系(附录A3。式(11),证明谐振子波函数满足下列关系并由此证明,在态下, 证:谐振
5、子波函数 (1)其中,归一化常数 (2)的递推关系为 (3) 39)利用Hermite多项式的求导公式。证明(参A3.式(12)证:A3.式(12):310)谐振子处于态下,计算,解:由题36), 由题37),对于基态,刚好是测不准关系所规定的下限。311)荷电q的谐振子,受到外电场的作用, (1)求能量本征值和本征函数。解: (2)的本征函数为 , 本征值 现将的本征值记为,本症函数记为。式(1)的势能项可以写成 其中 (3)如作坐标平移,令 (4)由于 (5)可表成 (6)(6)式中的与(2)式中的相比较,易见和的差别在于变量由换成,并添加了常数项,由此可知 (7) (8)即 (9) (1
6、0)其中 (11)312)设粒子在下列势阱中运动,求粒子能级。解:既然粒子不能穿入的区域,则对应的S.eq的本征函数必须在处为零。另一方面,在的区域,这些本征函数和谐振子的本征函数相同(因在这个区域,粒子的和谐振子的完全一样,粒子的波函数和谐振子的波函数满足同样的S.eq)。振子的具有的奇宇称波函数在处为零,因而这些波函数是这一问题的解(的偶宇称波函数不满足边条件)所以313)设粒子在下列势阱中运动, (1)是否存在束缚定态?求存在束缚定态的条件。解:S.eq: (2)对于束缚态(),令 (3)则 (4)积分,得跃变的条件 (5) 在处,方程(4)化为 (6)边条件为 因此 (7)再根据点连续
7、条件及跃变条件(5),分别得 (8) (9)由(8)(9)可得(以乘以(9)式,利用(8)式) (10)此即确定能级的公式。下列分析至少存在一条束缚态能级的条件。 当势阱出现第一条能级时,所以,利用 ,(10)式化为 ,因此至少存在一条束缚态能级的条件为 (11)纯势阱中存在唯一的束缚能级。当一侧存在无限高势垒时,由于排斥作用(表现为,对)。束缚态存在与否是要受到影响的。纯势阱的特征长度 。条件(11)可改写为 (12)即要求无限高势垒离开势阱较远()。才能保证势阱中的束缚态能存在下去。显然,当(即),时,左侧无限高势垒的影响可以完全忽略,此时,式(10)给出即 (13)与势阱的结论完全相同。令, 则式(10)化为 (14)由于,所以只当时,式(10)或(14)才有解。解出根之后,利用,即可求出能级 (15)专心-专注-专业