《变电站电气主接线设计课程设计(共23页).doc》由会员分享,可在线阅读,更多相关《变电站电气主接线设计课程设计(共23页).doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上摘要本次设计以火力发电厂电气主接线110KV、220KV高压母线和10.5KV低压母线为主要设计对象,分为任务部分、设计部分两部分,同时还有一些计算选择,以及必要的保护。本次设计为变电所电气主接线初步设计,进行了对电气主接线设计的基本认识、变压器的选择和电气主接线短路点等值网络的化简等等。同时还介绍了怎么去认识和用到断路器、隔离开关、电流互感器、电压互感器等相关方面的知识。本设计选择选择两台主变压器,其他设备如断路器,隔离开关,电流互感器,电压互感器,无功补偿装置和继电保护装置等等也按照具体要求进行选型、设计和配置,力求做到运行可靠,操作简单、方便,经济合理,具有扩建
2、的可能性和改变运行方式时的灵活性。使其更加贴合实际,更具现实意义。该变电站设有两台主变压器,站内主接线分为10.5KV、110KV和220KV三个电压等级。电压等级10.5KV采用单母线分段的接线方式。电压等级110KV、220KV采用双母带旁路接线形式,电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全厂(所)电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素,若选择错误的电气设备,轻则引起电气设备的损坏,重则导致大面积的事故,影响电力系统,造成重大事故。限于自己水平有限,内容难免有错误与不足之处,希望老师和同学能给与批评指正 目录第
3、一部分 设计任务书介绍第二部分 电气主接线方案确定一 电气主接线设计原则二 拟定主接线方案1. 原始资料分析2. 各类接线的适用原则3. 拟定方案中设计方案比较4. 画出主接线草图第三部分 主变形式确定一 相数确定二 主变电器绕组及接线方式三 冷却方式四 确定主变型号及参数第四部分 短路电流计算一 短路计算目的二 短路计算的一般规定三 具体短路计算第五部分 电气设备选择一 各种电气设备选择原则1. 母线形态选择2. 按稳定选择短路情况校验3. 确定设备型号时,尽量减少品种二 母线形式选择三 断路器,隔离开关,电流互感器,电压互感器第六部分 防雷保护及接地装置一 防雷保护的论述,保护概念及意义二
4、 选择避雷器型号第七部分 总结(每个同学独立完成并附在报告中)第八部分 附录一 短路电流计算二 电气设备校验计算三 主要设备清单四 主接线图第九部分 参考书目变电站电气主接线设计第一部分 设计任务书介绍电能是工业生产的主要动力能源,工厂供电设计的任务是从电力系统取得电源,经过合理的传输、变换、分配到工厂车间中每一个用电设备上,工厂工业负荷是电力系统的主要用户,工厂供电系统也是电力系统的一个组成部分,保证安全供电和经济运行,不仅关系到企业的利益,也关系到电力系统的安全和经济运行以及合理利用能源,工厂供电设计方案必须符合国家标准中的有关规定,同时必须满足安全、可靠、优质、经济的要求。设计任务:完成
5、火力发电厂的电气主接线的选择及电气设备的选择,包括变压器、断路器、电流互感器、隔离开关。原始资料: 火力发电厂的原始资料:装机4台,分别为供热式机组2*50MW(-),凝汽式机组2*300MW(-),厂用电率6%,年组机利用小时。电力负荷和电力系统链接情况如下:1、10.5KKV电压级最大负荷20MW,最小负荷15MW,-电缆馈线6回;2、220KV电压级最大负荷250MW,最小负荷200MW,-架空线6回;系统归算到本电厂220KV母线上的电抗标幺值-(基准容量为100MW)。3、110KV电压级与容量为3500KW的电网连接,架空线6回,系统归算到本电厂110KV母线上的电抗标幺值-(基准
6、容量100MW)。电气主接线形式(老是规定):220KKV采用双母带旁路母线接线,110KV采用双母带旁路母线接线。电气设备的电气选择:公共部分:变压器分组部分:2组、220KV旁路断路器,隔离开关,电流互感器。 本次设计中进行了电气主接线的设计,短路电流计算,主要电气设备选择及校验(包括隔离开关,电流互感器,母线,熔断器等),各电压等级配电装置设计。 本课程设计为某工厂总降压变电所的设计,该变电所要求的电压等级分别为10.5KV、110KV和220KV,其符合均为一、二级负荷,根据设计任务书的要求,本设计的主要内容包括:变电所的主接线方案,短路电流计算,主要用电设备选择和校验,变电所鉴定继电
7、保护和防雷保护及接地装置的设计等。 本设计以电力系统工程基础 、供配电系统设计规范 、发电厂电气部分等书作为参考依据为依据,设计的内容符合国家有关经济基础政策,所选设备全部为国家推荐的新型产品,技术先进,运行可靠,经济合理。 关键词:降压变电站;电气主接线;变压器;设备选型;无功补偿。第二部分 电气主接线方案确定电气主接线是发电厂、变电站电气设计的首要部分,也是构成电力系统的主要环节。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中的一个重要组成部分。主接线的确定,对电力系统的安全、稳定、灵活、经济运行及变电站电气设备的选
8、择、配电装置的布置、继电保护和控制方法的拟定将会产生直接影响。一、电气主接线的设计原则在进行主接线方式设计时,应考虑以下几点:(1) 变电所在系统中的地位和作用。变电站在电力系统中的地位和作用是决定主接线的主要因素。变电站是枢纽变电站、地区变电站、终端变电站、企业变电站还是分支变电站。由于它们在电力系统中的地位和作用不同,对主接线的可靠性、灵活性、经济性的要求也不同。(2)近期和远期的发展规模。 变电站主接线设计应根据510年电力系统发展规划进行,应根据负荷的大小和分布、负荷增长速度及地区网络情况和潮流分布,并分析各种可能的运行方式,来确定主接线的形式及站连接电源数和出线回数。(3)负荷的重要
9、性分级和出线回数多少对主接线的影响。(4)主变压器台数对主接线的影响。 主变的容量和台数,对变电站主接线的选择将产生直接的影响。通常对大型变电站,由于其传输容量大,对供电可靠性高,因此,其对主接线的可靠性、灵活性的要求也高。而容量小的变电站,其传输容量小,对主接线的可靠性、灵活性要求低。(5)备用容量的有无和大小对主接线的影响。发、送、变的备用容量是为了保证可靠的供电,适应负荷突增、设备检修、故障停运情况下的应急要求。电气主接线的设计要根据备用容量的有无而有所不同,例如,当断路器或 母线检修时,是否允许线路、变压器停运;当线路故障时,是否允许切除线路、变压器的数量等,都直接影响主接线的形式。二
10、、主接线的设计要求:1、可靠性:断路器检修时,能否不影响供电。线路、断路器、母线故障和检修时,停运线路的回数和时间的长短,以及能否保证对重要用户的供电。变电所全部停电的可能性。满足对用户的供电可靠性指标的要求。2、灵活性:调度要求。可以灵活的投入和切除变压器、线路、调配电源和负荷,能够满足系统在事故运行方式下、检修方式以及特殊运行方式下的调度要求。检修要求。可以方便的停运断路器、母线及其继电保护设备进行安全检修,且不影响对及户的供电。扩建要求。应留有发展余地,便于扩建。3、经济性:投资省;占地面积小;电能损失小。二:拟定主接线方案(1) 原始资料分析由该任务书可知,该电力系统电压等级有三个分别
11、为220KV/110KV/10.5KV。发电机组有两类,一是供热式机组2*50MW(-)凝气式机组2*300MW(-)。10.5KV电压等级最大负荷20MW,最小负荷15MW,所以用两台供热式发电机直接给母线供电,接线方式采用单母分段接线方式,不仅可以缩小故障范围,还易于扩建,可靠性也有所提高。而对于220KV电压极最大负荷为250MW,最小负荷为200MW,可以用一台凝气式发电机,然后经过升压变压器升至220KV,供给220KV母线,此变压器容量也需要满足一定的要求,再此我们选用SSP-/220三相双绕组变压器,额定电压、额定电流都满足要求,变压器容量也满足,而且还有一定的备用容量。对于11
12、0KV高压母线,也同样采用凝气式发电机进行供电,型号与上面相同。(2) 主接线的方式在本火力发电厂的电气主接线设计中,题目已经给定220KV选用双母带旁路接线,110KV采用双母带旁路接线。 单母线分段接线:可以提高供电可靠性和灵活性。对重要用户可以从不同段引出两回馈电线路,由两个电源供电;当一段母线发生故障,分段断路器自动将故障段隔离,保证正常段母线不间断供电,不致使重要用户停电;而两段母线同时故障的几率甚小,可以不予考虑。在可靠性要求不高时,亦可用隔离开关分该接线使段,任一段母线故障时,将造成两段母线同时停电,在判别故障后,拉开分段隔离开关,完好段即可恢复供电。该接线适用于小容量发电厂的发
13、电机电压配电装置,一般每段母线上所接发电容量为12MW左右。双母线接线:双母线接线有两组母线,并且可以互为备用。每一电源和出线的回路都装有一台断路器,有两组母线隔离开关,可分别与两组母线连接。两组母线之间的联络,通过母线联络断路器(简称母联断路器)来实现。有两组母线后,与单母线相比,投资有所增加,但运行的可靠性和灵活性大为特高。由于双母线有较高的可靠性,广泛用于以下情况:进出线回数较多,容量较大,。2.主接线方案的拟定 根据对原始资料的分析,现将各电压级可能采用的较佳方案列出,进而以优化组合方式组成最佳可比方案。(1)10.5KV电压级。鉴于出线回路多,且发电单机容量为50MW,远大于有关设计
14、规程对选用单母线分段接线每段上不宜超过12MW的规定,应确定为双母线分段形式,2台50MW机组分别接在两段母线上,剩余功率通过主变压器送往高一级电压220KV。由于2台50MW机组均接于10.5KV母线上,有较大短路电流,为选择轻型电器,应在分段处加装母线电抗器,各条电缆馈线上装设出现电抗器。考虑到50MW机组为供热式机组,通常“以热定电”,机组年最大负荷小时数较低,同时由于10.5KV电压最大负荷20MW,远小于250MW发电机组装机容量,即使在发电机检修或升压电压器检修的情况下,也可保证该电压等级负荷要求,因而10KV电压级与220KV电压之间按弱联系考虑,只设一台主变压器。(2)220K
15、V电压级。出线回路数大于4回,为使其出线断路器检修时不停电,应采用单母线分段带旁路接线或双母线带旁路接线,以保证其供电的可靠性和灵活性。其进线仅从10kv送来剩余容量250-【(1006%)+20】=74MW,不能满足220KV最大负荷250MW的要求。为此,拟以1台300MW机组按发电机变压器单元接线形式接到220KV母线上,其剩余容量或机组检修时不足容量由联络变压器与110KV接线相连,相互交换功率。(3)110KV电压级。110KV负荷容量大其主接线是本厂向系统输送功率的主要接线方式,为保证可靠性,可能有多种接线形式,经定性分析筛选后,课选用的方案为双母线带旁路接线和一台半断路器接线,通
16、过联络变压器与220KV连接,并通过一台三绕组变压器联系220KV及10KV电压,以提高可靠性,一台300MV机组与变压器组成单元接线,直接将功率送往110KV 电力系统。根据以上分析、筛选、组合,可得出接线方案如下:画出主接线草图如下(图1):图1第三部分 主变压器形式确定一相数确定 在330Kv及以下的变电站中,一般都选用三相式变压器。因为一台三相式变电器较同容量的三台单项式变压器投资小、损耗小、占地少,同时配电装置结构较简单,运行维护较方便。如果受到自造、运输等条件限制时,可选用两台容量较小的三相变压器,在技术经济合理时,也可选用单相变压器。 容量为600MW机组单元连接的主变压器和50
17、0kv电力系统中的主变压器应综合考虑运输和制造条件,经技术经济比较,可采用单相组成三相变压器。二主变压器绕组及接线方式 在有三种电压等级的变电站中,如果变压器各侧绕组的通过容量均达到变压器额定容量的百分之十五及以上,或低压侧虽然无负荷,但需要在该侧装无功补偿设备时,适宜采用三绕组变压器。变压器绕组连接方式必须和系统电压相位一致,否则不能并列运行。电力系统采用的绕组连接方式只有星接和角接,高、中、低三侧绕组如何组合要根据具体工程来确定。机组容量为125MW及以下的发电厂多采用三绕组变压器,机组容量为200MW以上的发电厂采用发电机-双绕组变压器单元接入系统,多绕组变压器一般用于600MW级大型机
18、组启动兼备用变压器。三冷却方式 油浸式电力变压器的冷却方式随其形式和容量不同而异,一般有自然风冷却、强迫风冷却、强迫油循环水冷却、强迫油循环风冷却、强迫油循环导向冷却。 中小型变压器通常采用依靠装在变压器油箱上面的片状或管型辐射式冷却器及电动风扇的自然风冷却及强迫风冷却方式散发热量。容量在31.5MVA及以上的大容量变压器一般采用强迫油循环风冷却,在发电厂水源充足的情况下,为压缩占地面积,也可采用强迫油循环水冷却。容量在350MVA及以上的特大变压器,一般采用强迫油循环导向冷却。四确定主变压器型号及参数 变电所主变压器容量一般按建所后5-10年的规划负荷考虑,并按其中一台停用时其余变压器能满足
19、变电站最大负荷的百分之五十到七十。由以上计算,查手册选择主变压器型号如下:电力变压器型号容量额定电压(KV)损耗(KW)短路电压(%)空载电压(%)联结组标号高压低压短路空载SSP-/22023622.5%181950155151.0YN,d11电力变压器型号额定容量额定电压(KV)高压中压低压SSPSL-/220236512113.8上表格右侧变压器技术数据表拆分后续表格损耗(KW)短路电压(%)空载电流(%)短路 空载 高中高低中低高中高低中低1057117371225414.224.18.12.16第四部分 短路电流计算一 短路计算的目的 在发电厂和变电站的电气设计中,短路电流计算是其中
20、的一个重要环节。其计算的目的主要有以下几方面: 1 在选择电气主接线时,为了比较各种接线方案,或确定某一接线是否需要采取限制短路电流的措施等,均需进行必要的短路电流计算。 2 在选择电气设备时,为了保证设备在正常运行和故障情况下都能安全,可靠的工作,同时又立求节约资金,这就需要进行全面的短路电流计算。例如:计算某一时刻的短路电流有效值,用以校验开关设备的开断能力和确定电抗器的电抗值;计算短路后较长时间短路电流有效值,用以校验设备的热稳定;计算短路电流冲击值,用以校验设备动稳定。 3 在设计屋外高压配电装置时需按短路条件校验软导线的相间和相相对地的安全距离。 4合理地配置各种继电保护和自动装置并
21、正确整定其参数:(1)电气主接线比选;(2)选择导体和电器;(3)确定中性点接地方式;(4)计算软导线的短路摇摆;(5)确定分裂导线间隔棒的距离;(6)验算接地装置的接触电压和跨步电压;(7)选择继电保护装置和进行整定计算。二 短路计算的一般规律1.计算的基本情况(1)电力系统中所有电源均在额定负载下运行。(2)所有同步电机都具有自动调整励磁装置(包括强行励磁)。(3)短路发生在短路电流为最大值时的瞬间。(4)所有电源的电动势相位角相等。(5)应考虑对短路电流值有影响的所有元件,但不考虑短路点的电弧电阻,对异步电动机的作用。仅在确定短路电流冲击值和最大全电流有效值时才予以考虑。2.接线方式计算
22、短路电流时所用的接线方式,硬是可能发生最大短路电流的正常接线方式(即最大运行方式),不能用仅在切换过程中可能并列运行的接线方式。3. 计算的一般步骤(1)选择计算短路点。 (2)画等值网络图。 首先去掉系统中的所有分支,线路电容,各援建的阻抗。 选取基准容量Sn和基准电压Ub(一般取各级的平均电压)。 将各元件的电抗换算为同一基准值的标幺值的标么电抗。 绘制等值网络图,并将各元件电抗统一编号。 (3)化简等值网络:为计算不同短路点的短路值,需将等值网络分别化简为以短路点为中心的辐射性等值网络,并求出各电源与短路点之间的电抗,即转移电抗Xod。 (4)求计算电抗X (5)由运算曲线查出各电源供给
23、的短路电流周期分量标幺值(运算曲线只作到X=3.5) 计算无限大容量的电源供给的短路电流周期分量。 计算短路电流周期分量有名值和短路容量。变压器、发电机参数计算如下:标幺值计算:取Sd=100MW300MW发电机: 变压器SSP-/220: 50MW发电机:变压器SSP-/220:三绕组变压器SSPSL-/220:折算后的标幺值(近似计算,取基准=100MVA):本次短路计算只需要计算旁路部分,(图1)等值网络的化简如下图:(a)化简一(b)化简二(c)化简三(d)化简四(e)化简五一、避雷针、避雷线、避雷器介绍1.1避雷针(线)简介:避雷针(线)是保护电气设备免遭雷电直击的有效措施。其作用是
24、将雷电吸引到避雷针(线)本身上来并安全地将雷电流引入大地,从而保护了设备。避雷针一般用于保护发电厂和变电站;避雷线主要用于保护输电线路,也可以用于保护发电厂和变电站。避雷针包括三部分:上部的接闪器(针头)、中部的接地引下线及下步的接地体。避雷针的型式有单支、多支,等高和不等高之分。避雷线也是由三部分组成:平行悬挂在空中的金属线(接闪器)、接地引下线、接地体。引下线上端与接闪器相连,而下端与接地体相连。1.2避雷针的配置:对于110kV及以上的发电厂和变电站,由于此类电压等级配电装置的绝缘水平高,可以将避雷针架设在配电装置的构架上。变电站装设避雷针时,应该使所有设备都处于避雷针保护范围之内。1.
25、3避雷线的配置:避雷线悬挂在输电导线的上面,如果线路是用木质电杆架线,那么应在木杆的腿上固定避雷线的接地引下线;如果线路是用金属杆塔或钢筋混凝土杆架设,可在金属杆塔本身或筋混凝土杆内的钢筋作为接地引下线。如果在木塔线路上悬挂有两根避雷线,那么在每根电杆处两根避雷线应互相成金属性连接,这样可以减少避雷线的波阻,降低过电压。避雷器是用来限制过电压,保护电气设备绝缘的电器。通常将它接于导线和地之间,与被保护设备并联。2.1避雷器介绍:避雷器是用来限制过电压,保护电气设备绝缘的电器。通常将它接于导线和地之间,与被保护设备并联。在正常情况下,避雷器中无电流流过。一旦线路上传来危及被保护设备绝缘的过电压波
26、时,避雷器立即击穿动作,使过电压电荷释放泄入大地,将过电压限制在一定的水平。当过电压作用过去以后,避雷器又能自动切断工频电压作用下通过避雷器泄入大地的工频电流续流,使电力系统恢复正常工作。避雷器的类型主要有保护间隙、管型避雷器、阀式避雷器、氧化锌避雷器等几种。管型避雷器的保护性能比保护间隙好,但不如阀式避雷器;氧化锌避雷的性能又比阀型避雷器优越。2.2避雷器的配置:避雷器配置原则:1)配电装置的每组母线上,一般应装设避雷器。2)220kV及以下变压器到避雷器的电气距离超过允许值,应在变压器附近增设一组避雷器。3)下列情况的变压器中性点应装设避雷器:a.直接接地系统中,变压器中性点为分级绝缘且装
27、有隔离开关时。b.不接地和经消弧线圈地系统中,多雷区的单进线变压器中性点上。4)单元接线的发电机出线宜装一组避雷器。5)在不接地的直配线发电机中性点上应装设一组避雷器。6)发电厂变电所35kV及以上电缆进线段,在电缆与架空线的连接处应装设避雷器。7)容量为25MW及以上的直配线发电机,应在每台电机出线处装一组避雷器,25MW以下的直配线发电机应尽量将母线上的避雷器靠近电机装设或装在电机出线上。装设点的选择据变电站设备要求及主接线形式应在下列点装设避雷器:110kV、35kV、10kV母线各段母线上,主变中性点接地处。型式的选择:1)按额定电压选择:避雷器的额定电压必须大于或等于安装处的电网额定
28、电压。2)按工作环境温度选择:选择工作环境温度在-40至+40之间,适用高寒、高温工作环境设备。二、避雷措施对直击雷的保护一般来用避雷针或避雷线。由线路入侵的雷电波电压;其主要防护措施是在发电厂内装设阀型避雷器。以限制入侵雷电波的幅值。使设备上的过电压不超过其冲击耐压值。发电厂的保护范围分为三种:1)电工装置,包括屋内外配电装置、主控制楼、组合导线和母线桥等。2)需要采取防雷措施的建筑物和构造物,按着在发生火花时能否引起爆炸或火灾。凡是在建筑物长期保存或经常发生瓦斯、蒸汽、尘埃与空气的混合物,可能引起电火花发生爆炸,以及引起房屋破坏和人身事故者。但在因电火花发生爆炸时,不致引起巨大的破坏或人身
29、事故者。凡遭受直击雷时,仅有火灾及机械破坏危害,且对建筑物内部的人有危害者。3)不需专门防雷保护的建筑物。在发电厂中的建筑物装设直击保护装置,诸如屋内外配电装置,主控室等。发电厂遭受雷害可能来自两个方面:雷直击于发电厂,雷击线路,沿线路向发电厂入侵的雷电波。1)应该采用避雷针或避雷线对高压配电装置进行直击雷保护并采取措施防止电击。2)应该采取措施防止或减少发电厂和变电所近区线路的雷击闪络并在厂、所内适当配置阀式避雷器以减少雷电侵入波过电压的危害。3)按本标准要求对采用的雷电侵入波过电压保护方案校验时,校验条件为保护接线一般应该保证2km外线路导线上出现雷电侵入波过电压时,不引起发电厂和变电所电
30、气设备绝缘损坏。雷电所引起的大气过电压将会对电器设备和变电所的建筑物产生严重的危害,因此,在变电所和高压输电线路中,必须采取有效的防雷措施,以保证电器设备的安全。运行经验证明,当前变电所中采用的防雷保护措施是可靠的,但是雷电参数和电器设备的冲击放电特性具有统计性,故防雷措施也是相对的,而不是绝对的。三选择避雷器型号 为保证弱电设备的正常运行,可从以下几方面采取措施: (1)采用多分支接地引下线,使通过接地引下线的雷电流大大减小。 (2)改善屏蔽,如采用特殊的屏蔽材料甚至采用磁特性适当配合的双层屏蔽。 (3)改进泄流系统的结构,减小引下线对弱电设备的感应并使原有的屏蔽网能较好地发挥作用。 (4)
31、除电源入口处装设压敏电阻等限制过压的装置外,在信号线接入处应使用光电耦合元件或设置具有适当参数的限压装置。 (5)所有进出控制室的电缆均采用屏蔽电缆,屏蔽层公用一个接地网。 (6)在控制室及通讯室内敷设等电位,所有电气设备的外壳均与等电位汇流排连接。直击雷防护技术以避雷针、避雷带、避雷网、避雷线为主要,其中避雷针是最常见的直击雷防护装置。10.5KV侧母线设置阀型避雷器。110kv 的屋外配电装置,将避雷针装在配电装置的构架上。220kV一般母线和线路都要装避雷器,对于220kV出线和主变压器保护选用阀型避雷器,发电机出口和厂用变压器保护选用金属氧化物避雷器。课程设计总结 经过两个星期的努力,
32、我们终于完成了本次变电所所电气主接线课程设计。回想这十多天的努力,虽然辛苦,却有很大的收获和一种成就感。 通过本次课程设计,使我更加扎实的掌握了有关电气设计方面的知识,在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。实践出真知,通过亲自动手制作,使我们掌握的知识不再是纸上谈兵。一开始我觉得这次设计与我们上课所学的知识衔接不上,根本不可能完成,但做了之后才知道理论与实际联系的是紧密的,在此次课程设计中不仅使我加深了对变电所电气主接线知识的理解,同时也基本掌握了变电所电气主接线设计的步骤,所学的理论知识很好的
33、运用到了实际工程中。在具体的设计过程中,涉及了很多知识,知识的掌握深度和系统程度都关系到整个设计的完整性和完善性,正是这样有趣而且具有挑战性的任务,激发了我的兴趣,我会尽可能的搜罗信息,设计尽量合理的电气主接线,而这个过程,也是我学习进步的过程。因此本次设计不但是我对所学的知识系统化,也锻炼了我查找资料、分析信息、选择判断的能力。从理论到实践,在这段日子里,可以说得是苦多于甜,但是可以学到很多很多的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起
34、来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,但可喜的是最终都得到了解决。在之前的理论学习中,对变电所电气主接线设计的各种信息了解不够全面,对于电力系统工程基础、电力系统分析以及发电厂电气部分等专业课程的知识不能联系起来,所学到的知识感觉都是分散的,不能融会贯通。而且以前所掌握的知识还不足以在整个课程设计中达到轻车熟路的程度。通过此次课程设计,我熟悉和学习了变电所电气主接线设计和各种计算。其中包括:短路电流计算、电气设备选型、导体选择计算、防雷保护等。掌握了各种电气主接线使用条件、优缺点、接线形式。了解了各种电
35、气设备的性能指标,校验方法,以及导线的选择。在整个的程设计中,把遇到的疑问做了笔记,并通过各种资料去了解相关的知识。也希望带着这些疑问在学习中与其他同学讨论或请教来解决。除此之进行外变电所电气主接线设计通过边做边学习及向同学、老师请教,在规定时间内顺利完成了任务范围内的工作。这次课程设计我觉得最好的一点是以小组的的形式来工作的,以往大家各做各的见不到面也没有交流,但首次的小组合作是我们收获颇多,我们一同讨论问题,一同制作设计,团队需要个人,个人也离不开团队,必须发扬团结协作的精神,某个人的离群都可能导致导致整项工作的失败。实习中只有一个人知道原理是远远不够的,必须让每个人都知道,否则一个人的错
36、误,就有可能导致整个工作失败。团结协作是我们实习成功的一项非常重要的保证。而这次实习也正好锻炼我们这一点,这也是非常宝贵的。回顾整个课程设计的过程,自己还有以下一些方面需要进一步加强,同时也可以在以后的学习工作中不断勉励自己:虽说对整个设计过程中涉及的计算机基本的规范已有较为深刻的了解,但因为初次做变电所电气主接线设计,对部分设备性能、使用方面了解不足,在今后的学习中应通过多查阅各种相关资料来掌握;对于所学专业知识应多熟悉,将所学的知识联系起来。本次课程设计大大增强了我们的团队合作精神,培养了我们自学的能力,以及实践能力和细心严谨的作风。此外,还学会了如何更好的去陈述自己的观点,如何说服别人认同自己的观点,相信这些宝贵的经验将会成为我今后成功的基石。课程设计是每个大学生必须拥有的一段经历,它让我们学到了很多在课堂上根本无法学到的知识,也打开了我们的视野,增长了见识,为我们以后更好的服务社会打下了坚实的基础。这次课程设计终于顺利完成了,在设计中遇到了很多专业知识问题,最后在老师的辛勤指导下,终于游逆而解。同时,在老师的身上我们学也到很多实用的知识,在次我们表示感谢!同时,对给过我帮助的所有同学和指导老师再次表示忠心的感谢!、专心-专注-专业