初中数学基本概念、公式大全(填空)(共22页).doc

上传人:飞****2 文档编号:15057659 上传时间:2022-05-10 格式:DOC 页数:22 大小:602.50KB
返回 下载 相关 举报
初中数学基本概念、公式大全(填空)(共22页).doc_第1页
第1页 / 共22页
初中数学基本概念、公式大全(填空)(共22页).doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《初中数学基本概念、公式大全(填空)(共22页).doc》由会员分享,可在线阅读,更多相关《初中数学基本概念、公式大全(填空)(共22页).doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上第一章 数与式课时1实数的有关概念一、有理数的意义 1数轴的三要素为 、 和 . 2若,互为相反数,则= . 3,互为倒数,则= .4绝对值 a ( a0 )即a= 0 ( a=0 ) -a ( a0,则a b;若a-b=0,则a b,若a-b2,则 ;商比较法:已知a0、b0,若1,则a b;若=1,则a b;若0一元二次方程有两个 实数根,即 .(2)=0一元二次方程有 相等的实数根,即 .(3)0一元二次方程 实数根.4 一元二次方程根与系数的关系若关于x的一元二次方程有两根分别为,那么 , .5列一元二次方程解应用题的一般步骤:审、找、设、列、解、答六步。课时

2、9分式方程及其应用1分式方程:分母中含有 的方程叫分式方程.2解分式方程的一般步骤:(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤: 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式; 解所得到的关于辅助未知数的新方程,求出辅助未知数的值; 把辅助未知数的值代入原设中,求出原未知数的值; 检验作答.4分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列 ;(2)检

3、验所求的解是否 .5列分式方程解应用题中常用的数量关系及题型 (1)数字问题(包括日历中的数字规律)设个位数字为c,十位数字为b,百位数字为a,则这个三位数是 ;日历中前后两日差 ,上下两日差 。 (2)体积变化问题。 (3)打折销售问题利润= -成本; 利润率= 100. (4)行程问题。 (5)教育储蓄问题利息= ; 本息和= =本金(1+利润期数);利息税= ; 贷款利息=贷款数额利率期数。6易错知识辨析:(1) 去分母时,不要漏乘没有分母的项. (2) 解分式方程的重要步骤是检验。课时10一元一次不等式(组)1不等式的有关概念:用 连接起来的式子叫不等式;使不等式成立的 的值叫做不等式

4、的解;一个含有 的不等式的解的 叫做不等式的解集.求一个不等式的 的过程或证明不等式无解的过程叫做解不等式.2不等式的基本性质:(1)若,则+ ;(2)若,0则 (或 );(3)若,0则 (或 ). 3一元一次不等式:只含有 未知数,且未知数的次数是 且系数 的不等式,称为一元一次不等式;一元一次不等式的一般形式为 或;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1.4一元一次不等式组:几个 合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集.5由两个一元一次不等式组成的不等式组的解集有四种情况:(已知)的解集是,即“小小取小”;的解

5、集是,即“大大取大”;的解集是,即“大小小大中间找”;的解集是空集,即“大大小小取不了”.6求不等式(组)的特殊解:不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案.7易错知识辨析:(1)不等式的解集用数轴来表示时,注意“空心圆圈”和“实心点”的不同含义.(2)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式(或)()的形式的解集:当时,(或)当时,(或)课时11. 平面直角坐标系与函数的概念1. 坐标平面内的点与_一一对应2. 根据点所在位置填表(图)点的位置横坐标符号纵坐标符号第一象限

6、第二象限第三象限第四象限3. 轴上的点_坐标为0, 轴上的点_坐标为0.4各象限角平分线上的点的坐标特征第一、三象限角平分线上的点,横、纵坐标 。第二、四象限角平分线上的点,横、纵坐标 。5. P(x,y)关于轴对称的点坐标为_,关于轴对称的点坐标为_,关于原点对称的点坐标为_.以上特征可归纳为:关于x轴对称的两点:横坐标相同,纵坐标 ;关于y轴对称的两点:横坐标 ,纵坐标相同;关于原点对称的两点:横、纵坐标均 。6. 描点法画函数图象的一般步骤是_、_、_7. 函数的三种表示方法分别是_、_、_8. 求函数自变量的取值范围时,首先要考虑自变量的取值必须使解析式有意义。 自变量以整式形式出现,

7、它的取值范围是 ; 自变量以分式形式出现,它的取值范围是 ; 自变量以根式形式出现,它的取值范围是 ;课时12. 一次函数1正比例函数的一般形式是_一次函数的一般形式是_.2. 一次函数的图象是经过 和 两点的一条 .3. 求一次函数的解析式的方法是 ,其基本步骤是: ; ; ; . 4.一次函数的图象与性质k、b的符号k0b0k0 b0k0 b0k0b0图像的大致位置经过象限第 象限第 象限第 象限第 象限性质y随x的增大而 y随x的增大而 y随x的增大而 y随x的增大而 5. 一次函数的性质k0直线上升y随x的增大而 ;k0直线下降y随x的增大而 .课时13反比例函数1反比例函数:一般地,

8、如果两个变量x、y之间的关系可以表示成y 或 (k为常数,k0)的形式,那么称y是x的反比例函数2. 反比例函数的图象和性质k的符号k0yxok0图像的大致位置oyx经过象限第 象限第 象限性质在每一象限内y随x的增大而 在每一象限内y随x的增大而 3的几何含义:反比例函数y (k0)中比例系数k的几何意义,即过双曲线y (k0)上任意一点P作x轴、y轴垂线,设垂足分别为A、B,则所得矩形OAPB的面积为 .课时14二次函数及其图像1. 二次函数的图像和性质0yxO0图 象开 口对 称 轴顶点坐标最 值当x 时,y有最 值当x 时,y有最 值增减性在对称轴左侧y随x的增大而 y 随x的增大而

9、在对称轴右侧y随x的增大而 y随x的增大而 2. 二次函数用配方法可化成的形式,其中 , .3. 二次函数的图像和图像的关系.4. 常用二次函数的解析式:(1)一般式: ;(2)顶点式: 。5. 顶点式的几种特殊形式. , , ,(4) . 6二次函数通过配方可得,其抛物线关于直线 对称,顶点坐标为( , ). 当时,抛物线开口向 ,有最 (填“高”或“低”)点, 当 时,有最 (“大”或“小”)值是 ;W wW.x kB 1.c 当时,抛物线开口向 ,有最 (填“高”或“低”)点, 当 时,有最 (“大”或“小”)值是 课时15函数的综合应用1点A在函数的图像上.则有 .2. 求函数与轴的交

10、点横坐标,即令 ,解方程 ;与y轴的交点纵坐标,即令 ,求y值3. 求一次函数的图像与二次函数的图像的交点,解方程组 .4二次函数通过配方可得, 当时,抛物线开口向 ,有最 (填“高”或“低”)点, 当 时,有最 (“大”或“小”)值是 ; 当时,抛物线开口向 ,有最 (填“高”或“低”)点, 当 时,有最 (“大”或“小”)值是 5. 每件商品的利润P = ;商品的总利润Q = .6. 函数图像的移动规律: 若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。7. 二

11、次函数的图像特征与及的符号的确定.二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点, 它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置, 符号反,一般、顶点、交点式,不同表达能互换。 注意:当x=1时,y=a+b+c;当x=-1时,y=a-b+c。若a+b+c0,即x=1时,y0;若a-b+c0,即x=-1时,y0。8函数的综合应用 利用一次函数图像解决求一次方程、一次不等式的解、比较大小等问题

12、。 利用二次函数图像、反比例函数图像解决求二次方程、分式方程、分式不等式的解、比较大小等问题。 利用数形结合的思路,借助函数的图像和性质,形象直观的解决有关不等式最大(小)值、方程的解以及图形的位置关系等问题。 利用转化的思想,通过一元二次方程根的判别式来解决抛物线与x轴交点的问题。 通过几何图形和几何知识建立函数模型,提供设计方案或讨论方案的可行性。 建立函数模型后,往往涉及方程、不等式、相似等知识,最后必须检验与实际情况是否相符合。 综合运用函数只是,把生活、生产、科技等方面的问题通过建立函数模型求解,涉及最值问题时,要想到运用二次函数。课时16. 统计1普查与抽样调查 为一特定目的而对

13、考察对象作的全面调查叫普查,如普查人口; 为一特定目的而对 考察对象作的全面调查叫抽查,如抽查全市期末考试成绩。2. 总体是指_,个体是指_,样本是指_,样本的个数叫做_3平均数的计算公式_; 加权平均数公式_4. 中位数是_ ;众数是_ _众数、中位数与平均数是从不同角度来描述一组数据的集中趋势。5极差是_,方差的计算公式_标准差的计算公式:_极差、方差和标准差都是用来衡量一组数据的波动大小,方差(或标准差)越大,说明这组数据的波动 。6几种常见的统计图: 条形统计图:用长方形的高来表示数据的图形。特点是:能够显示每组中的 ;易于比较数据之间的差别。 折线统计图:用几条线段连接的折线来表示数

14、据的图形。特点是:易于显示数据的 。 扇形统计图:用一个圆代表总体,圆中的各个扇形分别代表 中的不同部分,扇形的大小反映部分在总体中所占 的大小,这样的统计图叫扇形统计图。百分比的意义:在扇形统计图中,每部分占总体的百分比等于该部分所对扇形的圆心角的度数与 的比。扇形的圆心角=360 。 频数分布直方图:频数分布表、频数分布直方图和频数折线图都能直观、清楚的反映数据在各个小范围内的 ;绘制步骤是:计算最大值与最小值的差;决定组距与组数,一般的分512组;确定分点,通常把第一组的起点小半个单位;列频数分布表;绘制频数分布直方图。课时17. 概率1事件的分类: 必然事件: P=1 确定事件 事件

15、不可能事件:P=0 不确定事件: 0P1总之,任何事件E发生的概率P(E)都是0和1之间(也包括0和1)的数,即0P(E)1.2求概率的方法:(1)利用概率的定义直接求概率;(2)用树形图和_求概率;(3)用相乘的方法估计一些随机事件发生的概率第五章 图形的认识与三角形课时18几何初步及平行线、相交线1. 两点确定一条直线,两点之间 最短,即过两点有且只有一条直线。2. 1周角_,1平角_,1直角_3. 如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_互为补角,_的补角相等.4. _叫对顶角,对顶角_.5. 过直线外一点心_条直线与已知直线平行.6. 平行线的性质:两直

16、线平行,_相等,_相等,_互补.7. 平行线的判定:_相等,或_相等,或_互补,两直线平行.8. 平面内,过一点有且只有_条直线与已知直线垂直.9线段的垂直平分线: 性质:线段垂直平分线上的到这条线段的 的距离相等; 判定:到线段 的点在线段的垂直平分线上。10.角的平分线: 性质:角平分线上的点到角 相等; 判定:到角 的点在这个角的平分线上。课时19三角形的有关概念一、三角形的分类:1三角形按角分为_,_,_2三角形按边分为_,_.二、三角形的性质:1三角形中任意两边之和_第三边,两边之差_第三边2三角形的内角和为_,外角与内角的关系:_三、三角形中的主要线段:1_叫三角形的中位线2中位线

17、的性质:_3三角形三条中位线将三角形分成四个面积相等的全等三角形。4角平分线:三角形的角平分线交于一点,这点叫三角形的内心,它到三角形三边的距离 ,内心也是三角形内切圆的圆心。5三角形三边的垂直平分线:三角形三边的垂直平分线交于一点,这点叫做三角形的外心,它到三角形三个顶点的距离 ,外心也是三角形外接圆的圆心。6三角形的中线、高线、角平分线都是_(线段、射线、直线)四、等腰三角形的性质与判定:1. 等腰三角形的两底角_;2. 等腰三角形底边上的_、底边上的_和顶角的_互相重合(三线合一);3. 有两个角相等的三角形是_五、等边三角形的性质与判定:1. 等边三角形每个角都等于_,同样具有“三线合

18、一”的性质;2. 三个角相等的三角形是_,三边相等的三角形是_,一个角等于60的_三角形是等边三角形六、直角三角形的性质与判定:1. 直角三角形两锐角_2. 直角三角形中30所对的直角边等于斜边的_3. 直角三角形中,斜边的中线等于斜边的_;4. 勾股定理:_5. 勾股定理的逆定理:_课时20锐角三角函数和解直角三角形一、锐角三角函数abc1sin,cos,tan定义sin_,cos_,tan_ 2特殊角三角函数值304560sincostan3巧记特殊角的三角函数:正弦、余弦分母为2,正切分母为3,分子是“1,2,3;3,2,1;3,9,27”。二、解直角三角形1解直角三角形的概念:在直角三

19、角形中已知一些_叫做解直角三角形2解直角三角形的类型:已知_;已知_ 3如图(1)解直角三角形的公式: (1)三边关系:_ (2)角关系:A+B_, (3)边角关系:sinA=_,sinB=_,cosA=_ cosB=_,tanA=_ ,tanB=_ 4如图(2)仰角是_,俯角是_ 5如图(3)方向角:OA:_,OB:_,OC:_,OD:_6如图(4)坡度:AB的坡度iAB_,叫_,tani_OABC (图2) (图3) (图4)第六章 四边形课时21多边形与平行四边形一、四边形1. 四边形有关知识 n边形的内角和为 外角和为 如果一个多边形的边数增加一条,那么这个多边形的内角和增加 ,外角和

20、增加 n边形过每一个顶点的对角线有 条,n边形的对角线有 条2. 平面图形的镶嵌 当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个_时,就拼成一个平面图形. 只用一种正多边形铺满地面,请你写出这样的一种正多边形_3易错知识辨析多边形的内角和随边数的增加而增加,但多边形的外角和随边数的增加没有变化,外角和恒为360 二、平行四边形1平行四边形的性质(1)平行四边形对边_,对角_;角平分线_;邻角_.(2)平行四边形两个邻角的平分线互相_,两个对角的平分线互相_(填“平行”或“垂直”)(3)平行四边形的面积公式_.2平行四边形的判定(1)定义法:两组对边 的四边形是平行四边形.(2)边:两

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁