《七年级《绝对值》教学设计(共4页).doc》由会员分享,可在线阅读,更多相关《七年级《绝对值》教学设计(共4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上课题名称绝对值科 目初中数学年级七年级教学时间一课时(40分钟)学情分析学生的知识技能基础:学生已经认识数轴,并且知道了相反数的概念,能够用数轴上的点来表示有理数,也已经知道数轴上的一个点与原点的距离,会比较这些距离的大小.并初步体会到了数形结合的思想方法.学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了归纳、比较、交流等一些活动,解决了一些简单的现实问题,感受到了数学活动的重要性;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.学习目标1.从相反数到绝对值,使学生感知数学知识具有普遍的联系
2、性;2掌握有理数的绝对值概念及表示方法,熟练掌握有理数绝对值的求法和有关的简便计算;3.在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.教学重点、难点1.绝对值含义的理解、求已知数的绝对值,利用数轴比较有理数的大小2.绝对值的几何意义,代数定义的导出,两个负数比较大小教学资源PPT教学活动1一、创设问题情景,引出本节内容 活动:请两位同学到讲台前,分别向东、西走2米 思考:(1)他们所走的路程是否相同?(2)若向右为正,则分别如何表示他们的位置(3)他们所走的路程远近有何关系? 学生活动设计:学生思考上述问题,在分析问题的过程中得到,表示两位同学位置的数
3、是互为相反数,那么进一步思考就会提出一个问题:互为相反数的两个数只有符号不同,那么相同的方面是什么?为了解决这一问题,先请同学们作以下工作: 动手操作: 在数轴上画出一对互为相反数的有理数的点,观察两个点的位置关系并请同学在讨论后说出它们的位置关系交流:位置关系是两个点分别在原点的两侧,两个点到原点的距离相等或者说两个点到原点有相同倍单位长度两个点到原点的距离相等表明相应的有理数具有什么样的性质呢?今天我们就来研究这个问题教学活动2二、新知探究、思考、合作交流 问题1:绝对值的定义(教师讲解):为了便于研究这个性质,我们规定:在数轴上,表示有理数 的点到原点的距离叫做数 的绝对值记作: (几何
4、定义)这样我们就进一步明确一个数是由它的符号和绝对值两部分组成 巩固练习 根据绝对值的定义,求+4、-3、-2、0和 的绝对值学生活动设计:现在来看看它们到原点的距离分别是多少?(所谓到原点的距离就是看相应线段长度是多少个单位长度)问题2:探索绝对值的代数定义: 填空: (1)|3|_;(2)|1.5|_;(3)|3|_;(4)|-1.5|=_;(5)|0|=_解决这些问题后,你能得到什么结论? 学生活动设计: 学生根据绝对值的定义直接求出各数的绝对值,然后观察每个问题中的绝对值符号内的数和相应的结果之间的关系,进行归纳、总结:正有理数的绝对值是它本身;负有理数的绝对值是它的相反数;0的绝对值
5、是0用数学式子即: (代数定义) 教师补充:不论有理数a取何值,它的绝对值总是正数或0(统称为非负数),即总有 0问题3:巩固提高 下面我们就利用这个结论求有理数的绝对值: 例1:求下列各数的绝对值: -7 、+5 、-4.75、10.5 例2:化简: (1) -7; (2)6+-8例3:计算: -56-8 问题4:绝对值在比较两个负数大小上的应用: 规定:数轴上右边的点表示的数大于左边的点表示的数探究:在数轴上的点所表示的有理数有何特点? 学生活动设计:学生自主探索,自己寻找特殊的数进行检验(比如-3的绝对值是3,-2的绝对值是2,因而-3的绝对值大于-2的绝对值,而表示-3的点在表示-2的
6、点的左边,-3小于-2即:-3的绝对值大,但它本身反而比-2小)于是得出:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数,这可以比较两个有理数的大小;从数轴上可知: (1)正数大于0,0大于负数,正数大于负数; (2)两个负数绝对值大的反而小; (3)两个正数绝对值大的大这是比较两个有理数大小的法则巩固练习 : 比较下面各组数的大小(1)-5-4和-(5-4) ; (2)-3.13 和-3.13;(3)-1和-+2; (4)-(- 0.3)和-0.3 教学活动3三、知识应用、拓展创新 问题1:正式排球比赛,对所有使用的排球的质量是严格规定的,检查5个排球的质
7、量,超过规定重量克数记为正数,不足规定记为负数,检查结果如下:1510302040请指出哪一个排球的质量好一些?你怎样用学过的绝对值知识来说明这个问题解答第2个排球更好一些,因为它的绝对值最小说明最接近规定质量 问题2:已知数轴上有A和B两点,它们之间的距离为1,点A和原点的距离为2,那么所有满足条件的点B对应的数有哪些? 解答3、1、1、3学生活动设计: 对于问题1主要让学生体会绝对值在生活中的应用,此时只需要看各个数的绝对值即可,对于问题2,分析点A和点B在数轴上可能的位置,比如,点A和原点的距离为2说明点A表示的数的绝对值是2,则这个数为2或2,然后再分情况讨论问题3:已知(解答) -7、7、-1、1.学生活动设计: 主要考查学生对于绝对值的理解,能想到多解问题.让学生明白数学的解不止一个,培养学生的细心和严谨思维。本题对学生要求比较高,但是考题难度已经达到,如果本题能解决那么绝对值相关问题就都没有难度.教学活动4四、当堂检测五、小结与作业小结:1初步理解绝对值的概念(包括代数定义和几何定义); 2能求已知数的绝对值; 3会用绝对值比较两个负数的大小作业:第32页 随堂练习2、3题知识技能2、3题.附板书设计:引入相反数定义计算绝对值定义简单计算例题讲解学生演板练习学生演板小结专心-专注-专业