高中不等式的证明方法(共7页).doc

上传人:飞****2 文档编号:15049218 上传时间:2022-05-10 格式:DOC 页数:7 大小:592KB
返回 下载 相关 举报
高中不等式的证明方法(共7页).doc_第1页
第1页 / 共7页
高中不等式的证明方法(共7页).doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《高中不等式的证明方法(共7页).doc》由会员分享,可在线阅读,更多相关《高中不等式的证明方法(共7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上不等式的证明方法不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。注意的变式应用。常用 (其中)来解决有关根式不等式的问题。一、比较法比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。1、已知a,b,c均为正数,求证: 证明:a,b均为正数, 同理,三式相加,可得二、综合法综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。2、a、b、,求证:证:3、设

2、、是互不相等的正数,求证:证: 同理: 4、 知a,b,c,求证: 证明: 即,两边开平方得同理可得三式相加,得5、且,证:。证:6、已知策略:由于证明:。三、分析法分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。7、已知、为正数,求证:证:要证:只需证:即: 成立 原不等式成立8、且,求证。证:即: 即原命题成立四、换元法换元法实质上就是变量代换法,即对所证不等式的题设和结论中的字母作适当的变换,以达到化难为易的目的。9、,求证:。证明:令 左 10、,求证:证:由设, 11、已知abc,求证:证明:ab0, bc0, ac0 可设ab=x, b

3、c=y (x, y0) 则ac= x + y, 原不等式转化为证明即证,即证 原不等式成立(当仅x=y当“=”成立)12、已知1xy2,求证:xxyy3证明:1xy2,可设x = rcos,y = rsin,其中1r2,0xxyy= rrsin= r(1sin),1sin,rr(1sin)r,而r,r3 xxyy313、已知x2xyy2,求证:| xy |证明:x2xyy= (xy)y,可设xy = rcos,y = rsin,其中0r,0| xy | =| xy2y | = | rcos2rsin| = r|sin(ractan)|14、解不等式解:因为=6,故可令 = sin, cos,0

4、,则原不等式化为 sin cos 所以 sin + cos由0,知+ cos0,将上式两边平方并整理,得48 cos2+4 cos230解得0cos所以x6cos21,且x1,故原不等式的解集是x|-1x . 15、1x证明:1x0,1x1,故可设x = cos,其中0则x =cos= sincos=sin(),1sin(),即1x五、增量代换法在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如abc)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简16、已知a,bR,且ab = 1,求证:(a2)(b2)证明:a

5、,bR,且ab = 1,设a =t,b=t, (tR)则(a2)(b2)= (t2)(t2)= (t)(t)= 2t(a2)(b2)六、利用“1”的代换型17、策略:做“1”的代换。证明: .七、反证法反证法的思路是“假设矛盾肯定”,采用反证法时,应从与结论相反的假设出发,推出矛盾的过程中,每一步推理必须是正确的。18、若p0,q0,pq= 2,求证:pq2证明:反证法假设pq2,则(pq)8,即pq3pq (pq)8,pq= 2,pq (pq)2故pq (pq)2 = pq= (pq)( ppqq),又p0,q0 pq0,pqppqq,即(pq) 0,矛盾故假设pq2不成立,pq219、已知

6、、(0,1),求证:,不能均大于。证明:假设,均大于 ,均为正 同理 不正确 假设不成立 原命题正确20、已知a,b,c(0,1),求证:(1a)b, (1b)c, (1c)a 不能同时大于。证明:假设三式同时大于0a1 1a0 21、,求证:、均为正数。证明:反证法:假设、不均为正数 又 、两负一正不妨设, 又 同乘以 即,与已知矛盾 假设不成立 、均为正数八、放缩法放缩时常用的方法有:1去或加上一些项2分子或分母放大(或缩小)3用函数单调性放缩4用已知不等式放缩22、已知a、b、c、d都是正数,求证:12证明:,将上述四个同向不等式两边分别相加,得:1223、,求证:。证明: 判别式法24

7、、A、B、C为的内角,、为任意实数,求证:。证明:构造函数,判别式法令 为开口向上的抛物线 无论、为何值, 命题真九、构造函数法构造函数法证明不等式24 设0a、b、c2,求证:4abcabc2ab2bc2ca证明:视a为自变量,构造一次函数= 4abcabc2ab2bc2ca = (bc2b2c4)a(bc2bc),由0a2,知表示一条线段又= bc2bc = (bc)0,= bc4b4c8 = (b2)(c2)0,可见上述线段在横轴及其上方,0,即4abcabc2ab2bc2ca构造向量法证明不等式 根据已知条件与欲证不等式结构,将其转化为向量形式,利用向量数量积及不等式关系|,就能避免复

8、杂的凑配技巧,使解题过程简化应用这一方法证明一些具有和积结构的代数不等式,思路清晰,易于掌握25、 设a、bR,且ab =1,求证:(a2)(b2)证明:构造向量= (a2,b2),= (1,1)设和的夹角为,其中0| =,| =,= |cos=cos;yxxy = 02ABDCO另一方面,= (a2)1(b2)1 = ab4 = 5,而0|cos|1,所以5,从而(a2)(b2) 构造解析几何模型证明不等式 如果不等式两边可以通过某种方式与图形建立联系,则可根据已知式的结构挖掘出它的几何背景,通过构造解析几何模型,化数为形,利用数学模型的直观性,将不等式表达的抽象数量关系转化为图形加以解决

9、26、设a0,b0,ab = 1,求证:2证明:所证不等式变形为:2这可认为是点A()到直线 xy = 0的距离但因()()= 4,故点A在圆xy= 4 (x0,y0)上如图所示,ADBC,半径AOAD,即有:2,所以21实数绝对值的定义: |a|=这是去掉绝对值符号的依据,是解含绝对值符号的不等式的基础。 2最简单的含绝对值符号的不等式的解。 若a0时,则 |x|a -axa xa。 注:这里利用实数绝对值的几何意义是很容易理解上式的,即|x|可看作是数轴上的动点P(x)到原点的距离。 3常用的同解变形 |f(x)|g(x) -g(x)f(x)g(x) f(x)g(x);|f(x)|g(x)| f2(x)g2(x)。 4三角形不等式: |a|-|b|ab|a|+|b|。 专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁