t污泥活性抑制和污泥上浮的检测及控制.doc

上传人:豆**** 文档编号:15039973 上传时间:2022-05-10 格式:DOC 页数:15 大小:152.50KB
返回 下载 相关 举报
t污泥活性抑制和污泥上浮的检测及控制.doc_第1页
第1页 / 共15页
t污泥活性抑制和污泥上浮的检测及控制.doc_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《t污泥活性抑制和污泥上浮的检测及控制.doc》由会员分享,可在线阅读,更多相关《t污泥活性抑制和污泥上浮的检测及控制.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流t污泥活性抑制和污泥上浮的检测及控制.精品文档.污泥活性抑制和污泥上浮的检测及控制在采用活性污泥法处理废水的运行过程中,有多种原因可引起曝气池活性污泥的活性受到抑制而导致微生物性质和类群的改变、有机底物的去除率下降。有些微生物(如丝状菌)的过量增长会形成泡沫(foam)或浮渣(scum),运行时机械应力、挟裹气泡等均会使活性污泥的比重降低而上浮飘走,不仅增加了出水中的悬浮固体量,而且会大大降低生物反应系统中活性污泥的活性和数量。本文在阅读大量国内外文献基础上,对导致活性污泥活性抑制与上浮的原因、检测分析方法和控制技术进行了讨论。1 引起活性污

2、泥上浮的主要因素1.1 进水水质1.1.1 过量的表面活性物质和油脂类化合物这类物质可以影响细胞质膜的稳定性和通透性,使细胞的某些必要成分流失而导致微生物生长停滞和死亡。当曝气池进水中含有大量这类物质时,会产生大量泡沫(气泡),这些气泡很容易附聚在菌胶团上,使活性污泥的比重降低而上浮。另外,当进水含油脂量过高时,经过曝气与混合,油脂会附聚在菌胶团表面,使细菌缺氧死亡,导致比重降低而上浮1-3。1.1.2 pH值冲击过高或过低的pH值会影响活性污泥微生物胞外酶及存在于细胞质和细胞壁里酶的催化作用以及微生物对营养物质的吸收。当连续流曝气反应池内pH4.0或pH11.0时,多数情况下活性污泥中微生物

3、活性受到抑制,或失去活性,甚至死亡,以致发生污泥上浮4。用SBR法处理啤酒废水和化工废水的实验结果表明:当进水pH值为2.55.0和10.012.0时,pH值越低(或越高),污泥活性受抑制越严重,上浮污泥量越多。控制低pH值(3.5-7.0)的反应周期内pH值不变,两种废水的活性污泥在pH5.5时就开始出现污泥上浮5-6。另一方面,随着pH值的增加,由于胞外聚合物(Extra CelluarPolymer)的电离官能团增加,活性污泥絮凝作用增加(尽管带的负电性增加),但当pH值超过一定范围后,絮凝作用下降。可见,这时的电排斥作用增加,也会造成活性污泥脱絮(悬浮、不絮凝、反絮凝(defloccu

4、lation)和上浮6。1.1.3 盐含量的影响对进水的pH值调整不能消除碱度对活性污泥的影响。对碱性进水调pH值,虽然中和了碱性物质,但产生了盐。盐溶液浓度不同其渗透压也不同,渗透压是影响微生物生存的重要因素之一7。如微生物所处的溶液渗透压发生突变,就会导致细胞死亡。1.1.4 水温过热组成活性污泥的微生物适合的温度范围一般为1535,超过45时会使活性污泥中大部分微生物死亡而上浮(经过长期驯化的或特殊微生物除外)8。另外,Klaus Kriebitzsch等在用SBR工艺测定温度对细胞内酶活性影响的试验中也发现,温度在20、30和40时酶活性较好,大于50之后,酶的活性明显下降。1.1.5

5、 致毒性底物对好氧活性污泥微生物有致毒作用的底物主要包括:含量过高的COD、有机物(酚及其衍生物,醇,醛和某些有机酸等)、硫化物、重金属及卤化物。高底物浓度可与细胞酶活动中心形成稳定的化合物,导致基质不能接近,无法被降解,甚至使细胞中毒死亡。重金属离子进人细胞后主要与酶或蛋白质上的-SH基结合而使之失活或变性。微量的重金属离子还能在细胞内不断积累最终对微生物发生毒害作用(微动作用)。卤化物最常见的是碘和氯,碘不可逆地与菌体蛋白质(或酶)的酪氨酸结合,生成二碘酪氨酸,使菌体失活。氯与水合成次氯酸,其分解产生强氧化剂。而且废水中有机物的突变,使原被驯化好的并能降解有机毒物的微生物减少或消失。1.2

6、 工艺运行1.2.1 过量曝气微生物处于饥饿状态而引起自身氧化进人衰老期,池中溶解氧浓度(DO)上升;或者由于污泥活性差,曝气叶轮线速度过高,供氧过多。总之,DO上升,短期内污泥活性可能很好,因为新陈代谢快,有机物分解也快,但时间一久,污泥被打得又轻又碎(但无气泡),象雾花片似的飘满沉淀池表面,随水流走。这种污泥色浅,活性差,耗氧速率下降,污泥体积和污泥指数增高,处理效果明显降低。1.2.2 缺氧引起的污泥上浮污泥呈灰色,若缺氧过久则呈黑色,并常带有小气泡。1.2.3 反硝化引起的污泥上浮当废水中有机氨化合物含量高或氨氮高时,在适宜条件下可被硝酸菌和亚硝酸菌氧化为NO3-,如二沉池积泥或停留时

7、间过长,NO3-还原产生的N2会被活性污泥絮凝体所吸附,使得活性污泥上浮。1.2.4 回流量太大引起的污泥上浮回流量突增,会使气水分离不彻底,曝气池中的气泡带到沉淀区上浮,这种污泥呈颗粒状,颜色不变,上翻的方向是从导流区壁直向沉淀区壁成湍流翻动。1.2.5 二沉池池底积泥引起的污泥上浮如果二沉池底泥发酵,产生的CO2和H2也会附聚在活性污泥上,使污泥比重降低而上浮。污泥腐化产生CH4、H2S后卜浮,首先是一个个小气泡逸出水面,紧接着有黑色污泥上浮。1.3 活性污泥丝状菌过量生长及其控制产生的污泥上浮1.3.1 温度与负荷微丝菌(Mocrothrix patvicella)的最佳生长条件是温度在

8、1215,污泥负荷小于0.1kg/(kgd)。它的天然疏水性会引起活性污泥的脱水性差,最高为490mL/g。在温度高于20后、即使污泥负荷是0.2kg/(kgd),M.parvicella也不增值。它打碎成3080m的碎片,成浮渣形式而上浮。1.3.2 表面活性物质、类脂化合物及机械应力作用引起低负荷膨胀和污泥上浮的最频繁的丝状菌是:微丝菌、0092型、0041型。在进水中表面活性物质和类脂化合物浓度的升高、接种和机械应力也会引起放线菌(Actinomycetes)的增长。Kappeleretal观察到机械应力(如离心泵)损坏紧密的活性污泥絮凝体并导致微丝菌的过量增长9。1.3.3 过量投加丝

9、状菌抑制剂在曝气池流出槽中注人过氧化氢,数天后,丝状菌就消失,SVI从580mL/g下降至178mL/g。且过氧化氢也有确保曝气池DO和去除H2S臭味的效果。但若加人量太多会引起活性污泥的活性抑制及污泥上浮。2 活性污泥活性抑制与上浮的检测方法2.1 测定污泥的耗氧速率(OUR)和 ATP测定活性污泥的耗氧速率(OUR),可判断有无毒物流入、负荷条件和排泥平衡情况10。若同时测定三磷酸腺苦(ATP),还可以从处理机能方面对微生物量和活性度进行定量分析。根据P.E.Jorgensen等的研究表明,测定ATP含量和OUR是检测生物量活性的可靠方法。2.2 利用指示生物诊断活性污泥状态和性能用显微镜

10、对活性污泥中的微生物进行镜检,其中的原生动物和后生动物(统称为微型动物)相对比细菌个体大,在显微镜下易于观察、鉴别和计数,且对外界环境条件的变化更为敏感,作为指示生物来诊断活性污泥的状态和性能,在工程实践中已有较广泛应用。这种指示作用概括于表1中。表1微型动物对活性污泥状态和性能的指示作用微型动物镜检情况活性污泥状态钟虫、遁纤虫、累枝虫、聚缩虫、独缩虫等固着型原声动物和轮虫等后生动物大量出现(106个/L)良好微型动物种类高度多样化,没有占绝对优势数量的微生物波豆虫、尾波虫、侧滴虫、屋滴虫、豆形虫、草履虫等快速游泳型原生动物较多恶化严重恶化时微型动物极少,或被一种(或一组)占优势漫游虫、斜叶虫

11、、管叶虫等慢速游泳型或匍匐行进的原生动物较多恶化良好可观察到微型动物,但个体数比正常污泥害臊,蠕动纤毛类叫少。球衣菌、丝硫菌、微丝菌、放线菌大量出现膨胀、泡沫和浮渣变形虫和简便虫等肉足类原生动物的个数在混合液中出现104个/mL分散、解体新态虫、扭头虫、草履虫出现较多溶解氧(DO)不足轮虫和变形虫大量出现曝气过剩3 控制污泥上浮的技术措施稳定曝气池进水水质的最可行、最经济的方法是终水回流,用以稀释、调节曝气池进水中的有机物浓度,使其稳定在一定范围内,终水回流的先决条件是污水处理厂的处理能力必须大于实际进水量。污水处理厂应考虑设有较大容积的调节池(均质池)并控制好均质池(调节池)液位。因高液位会

12、使均质池的水量缓冲能力下降,甚至丧失;而低液位运行不仅均质效果差,且易使油和均质池底的杂质进人曝气池,造成活性污泥受冲击而上浮。液位宜控制在5070。合理投加营养盐。由于工业废水中营养比例失调,常常碳源充分而氮、磷等营养物不足,因此处理工业废水时须另外补加。一般以尿素和磷酸盐为氮源和磷源,但投加量不宜过量。曝气池人口设中和池及由碱池、酸池、pH检测仪、pH自动调节阀等组成的pH自动调节系统,使曝气池进水的pH值控制在要求范围内。 采用纯氧曝气。从西德引进的纯氧曝气装置,投产5a以来从未出现污泥上浮。污泥中毒引起的污泥上浮可以加大曝气量,减少进水量并清除死污泥。活性污泥的微生物组成主要依赖于废水

13、成分、流动形式、运行条件和适宜的设计。由于在实际处理过程中几乎难以控制废水成分,因此对运行条件和反应器设计进行优化选择至关重要。污泥减量新工艺探讨活性污泥法是目前应用最广泛的污水生物处理工艺,但会产生大量剩余污泥对普通活性污泥法来说,初沉池产生的污泥量约为污水处理量的0.2%0.3%(污泥含水率为95%97%),二沉池排出的剩余活性污泥量约为污水处理量的1%2%(污泥含水率为99.4%99.6%)从20世纪90年代开始,各种污泥减量化技术得到了迅速发展,目前可能应用于实践的新型污泥减量工艺主要有两段式好氧生物反应器1、投加解耦联剂、好氧-沉淀-厌氧工艺、回流污泥溶胞工艺等。 1 投加解耦联剂微

14、生物正常情况下的分解代谢和合成代谢通过腺苷三磷酸(ATP)和腺苷二磷酸(ADP)之间的转化耦联在一起,即分解一定的底物,将有一定比例的生物体合成。但在特殊情况下,底物被氧化的同时,ATP不大量合成或者合成以后迅速由其他途径释放,这样细菌在正常分解底物的同时,自身合成速度减慢投加解耦联剂是实现这种代谢解耦联的方法之一。解耦联剂通常为脂溶性小分子物质且一般含有酸性基团,其作用机理是通过与H+的结合降低细胞膜对H+的阻力,携带H+跨过细胞膜,使膜两侧的质子浓度梯度降低。降低后的质子浓度梯度不足以驱动ATP合成酶合成ATP,从而减少了氧化磷酸化作用所合成的量,氧化过程中所产生的能量最终以热的形式被释放

15、掉,从而降低剩余污泥产生量。Starand等2比较了12种解耦联剂,试验结果表明三氯苯酚(TCP)最有效。在试验开始阶段,投加的传统活性污泥工艺中污泥产率是不投加的50%;但80d后随着反应器内TCP水平的降低,污泥产率增加。Chen等3研究了3,3,4,5-四氯水杨酰苯胺(TCS)在活性污泥法中的减量效果。当TCS投加量为0.8/时污泥产率减少40%,而且没有影响底物的去除效率。当达到1.2mg/l时,没有影响到大肠杆菌个体大小和细胞分裂,但大肠杆菌的ATP含量和干密度有所减少。谢敏丽等4比较了4种解耦联剂(对氯酚、间氯酚、间硝基酚和邻硝基酚),结果表明间氯酚在减少污泥产率方面是最有效的,同

16、时对污水的处理效果影响较小,当间氯酚的浓度为20mg/l时污泥产率下降了86.9%,对的去除率下降了13.2%。投加解耦联剂减量剩余污泥的最大优势是不需要对现有污水处理工艺做大的改进,只需增设投药装置即可。但有关氧化磷酸化解耦联的机理还有许多不明之处,需要结合生物化学、分子生物学以及毒理学方面的方法和理论作进一步研究。目前解耦联剂在实际应用中存在以下问题:投加的解耦联剂在较长时间后由于微生物的驯化而被降解,从而失去解耦联作用;加入解耦联剂后虽然污泥的产量降低了,但需要更多的氧去氧化未能转化成污泥的有机物,从而使供氧量增加;目前试验中投加解耦联剂的量一般在1100/,用量很大,需要对运行费用作深

17、入分析;解耦联剂通常是较难生物降解或对生物有较大毒性的化合物,微生物对解耦联剂的降解不完全有可能导致潜在的环境安全问题。2 好氧-沉淀-厌氧工艺好氧-沉淀-厌氧工艺(OSA,Oxic-Settling-Anaerobic)也是基于代谢解耦联理论的污泥减量工艺。其基本原理是,在常规活性污泥法的污泥回流过程中设置一个厌氧段,使微生物交替进入好氧和厌氧环境,细菌在好氧阶段所获ATP不能立即用于合成新的细胞,而是在厌氧段作为维持细胞生命活动的能量被消耗。微生物分解和合成代谢相对分离,而不像通常条件下紧密耦联,从而达到污泥减量的效果。工艺示意图见图1。图1 工艺示意图Chudoba等5发现OSA工艺比传

18、统活性污泥工艺污泥产率降低20%65%,SVI值(60ml/g)也比传统活性污泥工艺的(200ml/g)低,即OSA工艺可改善污泥的沉降性能。同时,由于OSA的流程和除磷工艺流程相似,有利于除磷菌的生长,对磷的去除优于传统活性污泥法。也有研究者认为OSA系统污泥减量的原因不仅仅是能量解耦联,Chen等6发现在OSA系统中,当厌氧池中氧化还原电位 (ORP)保持在-250mV时,剩余污泥减量50%,对出水没有影响且污泥的沉降性能更好;他通过试验比较了能量解耦联、捕食者生长、微生物促进有机质溶解和污泥腐化破解等因素的影响,认为厌氧池中污泥腐化破解是促进OSA系统污泥产生量减少的主要原因。国内朱振超

19、等7采用好氧-沉淀-兼氧活性污泥工艺使上海锦纶厂废水处理站的剩余污泥达到零排放。在传统活性污泥工艺中,污泥产量随着污泥负荷增加而增加,但在OSA工艺中污泥产量反而下降,而且OSA还可以改善污泥的脱水性能,增加除磷能力,因此OSA工艺可以应用在进水有机物浓度较高的条件下,具有较广阔的发展前景。OSA工艺的不足是水力停留时间较长(是常规活性污泥法的两倍),而且需要设置厌氧段,增加了基建费用和占地面积。3 回流污泥溶胞工艺根据污水生物处理工艺中微生物的代谢特性污水中的有机物一部分被微生物分解提供其生命活动的能量,最终代谢为二氧化碳和水分等;另一部分用来增殖,将有机物转化为新的生物体。如果增长的生物体

20、可以作为微生物的底物并重复上述代谢过程就可以减少污泥的产生量。微生物基于自身细胞溶解形成的二次基质的生长方式称之为隐性生长(Cryptic growth或Death-regeneration)。隐性生长过程包括溶胞和生长,其中污泥细胞自身的解体是污泥降解的限速步骤,可以利用各种物理、化学和生物方法加速这一步骤。这种方法在工程上便于实现,只要在回流污泥管路上增加溶胞系统即可。物理溶胞方法主要包括加热!机械破碎、超声破解等,其能耗较高,而且需要专门的设备,此外污泥菌体破解后,细胞壁碎片等生物难降解物进入污水中会引起出水中COD、SS有所增加8,同时由于系统排泥量减少,如果单位排泥中的氮磷含量保持不

21、变,出水中的氮和磷会增加。化学溶胞方法包括臭氧溶胞、过氧乙酸溶胞、氯气溶胞等,其中臭氧研究最多。臭氧可以破坏细胞壁、细胞膜而使蛋白质、多聚糖、脂肪、核酸等从细胞中释放出来。Kamiya等9发现间歇式臭氧氧化效果优于连续式,间歇式操作时臭氧投加量为9.011.0mg/(gSSd)即可使污泥减量50%,而要达到同样的减量效果,连续式操作所需的臭氧投加量为30 mg/(gSSd).金瑞洪等10利用SBR和污泥臭氧化及回流装置组成污水处理系统,在当臭氧投加量为0.0gO3/gSS且污泥回流量为0.4l/(l.d)时,污泥观测产率可接近零,而且系统COD去除率、污泥沉降性能无明显变化。利用氯气对污泥进行

22、减量的原理和臭氧相同,Saby等在氯的投加量为133mg/gMLSS时,污泥产生量减少了65%,但是污泥沉降性能恶化,同时出水含量增加。过氧乙酸(PAA)具有和臭氧相似的强氧化效果,而且价格低廉,产物无毒,易被微生物代谢,0.01%PAA溶液和污泥反应6h后,基本上不残留PAA和H2O2,其处理后的污泥混合液具有较好的生物可降解性。化学溶胞方法的缺点是:投药增加了系统的运行费用,而且对设备有一定的腐蚀作用; 系统去除氮磷的效果不好,出水SS浓度略高于传统活性污泥法,污泥沉降性能可能恶化; 长期无污泥排放时,污泥中重金属含量和传统活性污泥法相比有一定增加; 为了保证曝气池中生物对回流基质的利用,

23、需要增加曝气量,相应的动力费用会增加; 溶胞过程有可能产生其他有机污染物,如氯气能够和污泥中的有机物产生反应,生成三氯甲烷(THMs)等氯代有机物,这是不容忽视的问题。生物溶胞方法是通过投加能分泌胞外酶的细菌或酶制剂和抗菌素对细菌进行溶胞。酶一方面能够溶解细胞,同时还可以使不容易生物降解的大分子有机物分解为小分子物质,有利于细菌对二次基质的利用投加的细菌可以从消化池中选取,也可以从溶菌酶方面考虑,甚至包括特殊的噬菌体和能分泌溶菌物质的真菌。虽然生物溶胞方法环境友好,但是酶制剂或抗菌素费用昂贵。4 结语污泥产生量的不断增加给其后续处理处置带来了沉重压力,而且不恰当的处理还会造成二次污染,因此源削减是污泥处理的首要原则。新型污泥减量工艺的应用可以在保证污水处理效果的前提下大幅减少污泥的产生量,从而实现污水处理的可持续发展。然而这些工艺的机理和参数还有待于进一步研究,出水质量还有待于进一步提高,随着这些问题的逐步解决,污泥减量工艺将得到更广泛的应用。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁