解三角形大题及答案.docx

上传人:飞****2 文档编号:15029225 上传时间:2022-05-10 格式:DOCX 页数:16 大小:336.65KB
返回 下载 相关 举报
解三角形大题及答案.docx_第1页
第1页 / 共16页
解三角形大题及答案.docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《解三角形大题及答案.docx》由会员分享,可在线阅读,更多相关《解三角形大题及答案.docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上1(2013大纲)设的内角的对边分别为,.(I)求(II)若,求.2(2013四川)在中,角的对边分别为,且.()求的值;()若,求向量在方向上的投影.3(2013山东)设的内角所对的边分别为,且,.()求的值; ()求的值.4(2013湖北)在中,角,对应的边分别是,.已知.(I)求角的大小;(II)若的面积,求的值.5(2013新课标)在内角的对边分别为,已知.()求;()若,求面积的最大值.6(2013新课标1)如图,在ABC中,ABC=90,AB=,BC=1,P为ABC内一点,BPC=90(1)若PB=,求PA;(2)若APB=150,求tanPBA 7(20

2、13江西)在ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(conA-3sinA)cosB=0.(1)求角B的大小; (2)若a+c=1,求b的取值范围33(2013大纲)设的内角的对边分别为,.(I)求(II)若,求.【答案】 4(2013年高考四川卷(理)在中,角的对边分别为,且.()求的值;()若,求向量在方向上的投影.【答案】解:由,得 , 即, 则,即 由,得, 由正弦定理,有,所以,. 由题知,则,故. 根据余弦定理,有, 解得或(舍去). 故向量在方向上的投影为 35(2013年普通高等学校招生统一考试山东数学(理)试题(含答案)设的内角所对的边分别为,且,.()

3、求的值; ()求的值.【答案】解:()由余弦定理,得, 又,所以,解得,. ()在中, 由正弦定理得 , 因为,所以为锐角,所以 因此 . 36(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版)已知函数的最小正周期为.()求的值; ()讨论在区间上的单调性.【答案】解: () .所以 () 所以 37(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版)已知函数的周期为,图像的一个对称中心为,将函数图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移个单位长度后得到函数的图像.(1)求函数与的解析式;(2)是否存在,使得按照某种顺序成等

4、差数列?若存在,请确定的个数;若不存在,说明理由(3)求实数与正整数,使得在内恰有2013个零点.【答案】解:()由函数的周期为,得 又曲线的一个对称中心为, 故,得,所以 将函数图象上所有点的横坐标伸长到原来的倍(纵坐标不变)后可得的图象,再将的图象向右平移个单位长度后得到函数 ()当时, 所以 问题转化为方程在内是否有解 设, 则 因为,所以,在内单调递增 又, 且函数的图象连续不断,故可知函数在内存在唯一零点, 即存在唯一的满足题意 ()依题意,令 当,即时,从而不是方程的解,所以方程等价于关于的方程, 现研究时方程解的情况 令, 则问题转化为研究直线与曲线在的交点情况 ,令,得或 当变

5、化时,和变化情况如下表当且趋近于时,趋向于 当且趋近于时,趋向于 当且趋近于时,趋向于 当且趋近于时,趋向于 故当时,直线与曲线在内有无交点,在内有个交点; 当时,直线与曲线在内有个交点,在内无交点; 当时,直线与曲线在内有个交点,在内有个交点 由函数的周期性,可知当时,直线与曲线在内总有偶数个交点,从而不存在正整数,使得直线与曲线在内恰有个交点;当时,直线与曲线在内有个交点,由周期性,所以 综上,当,时,函数在内恰有个零点 38(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题)本小题满分14分.已知,.(1)若,求证:;(2)设,若,求的值.【答案】解:

6、(1) 即, 又, (2) 即 两边分别平方再相加得: 39(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版)已知函数,.() 求的值; () 若,求. 【答案】(); () 因为,所以, 所以, 所以. 40(2013年高考湖南卷(理)已知函数.(I)若是第一象限角,且.求的值;(II)求使成立的x的取值集合.【答案】解: (I). (II) 41(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题)本小题满分16分.如图,游客从某旅游景区的景点处下山至处有两种路径.一种是从沿直线步行到,另一种是先从沿索道乘缆车到,然后从沿直线步行到.现

7、有甲.乙两位游客从处下山,甲沿匀速步行,速度为.在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到.假设缆车匀速直线运动的速度为,山路长为,经测量,.(1)求索道的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在什么范围内?CBA【答案】解:(1), , 根据得 (2)设乙出发t分钟后,甲.乙距离为d,则 即 时,即乙出发分钟后,乙在缆车上与甲的距离最短. (3)由正弦定理得(m) 乙从B出发时,甲已经走了50(2+8+1)=550(m),还需走710 m 才能到达C 设乙的步行速度为V ,则 为使两位游客在处互相等

8、待的时间不超过分钟,乙步行的速度应控制在范围内 法二:解:(1)如图作BDCA于点D, 设BD=20k,则DC=25k,AD=48k, AB=52k,由AC=63k=1260m, 知:AB=52k=1040m. (2)设乙出发x分钟后到达点M, 此时甲到达N点,如图所示. 则:AM=130x,AN=50(x+2), 由余弦定理得:MN2=AM2+AN2-2 AMANcosA=7400 x2-14000 x+10000, 其中0x8,当x=(min)时,MN最小,此时乙在缆车上与甲的距离最短. (3)由(1)知:BC=500m,甲到C用时:=(min). 若甲等乙3分钟,则乙到C用时:+3= (

9、min),在BC上用时: (min) . 此时乙的速度最小,且为:500=m/min. 若乙等甲3分钟,则乙到C用时:-3= (min),在BC上用时: (min) . 此时乙的速度最大,且为:500=m/min. 故乙步行的速度应控制在,范围内. CBADMN 42(2013年高考湖北卷(理)在中,角,对应的边分别是,.已知.(I)求角的大小;(II)若的面积,求的值.【答案】解:(I)由已知条件得: ,解得,角 (II),由余弦定理得:, 43(2013年普通高等学校招生统一考试新课标卷数学(理)(纯WORD版含答案)在内角的对边分别为,已知.()求;()若,求面积的最大值.【答案】 44

10、(2013年高考新课标1(理)如图,在ABC中,ABC=90,AB=,BC=1,P为ABC内一点,BPC=90(1)若PB=,求PA;(2)若APB=150,求tanPBA【答案】()由已知得,PBC=,PBA=30o,在PBA中,由余弦定理得=,PA=; ()设PBA=,由已知得,PB=,在PBA中,由正弦定理得,化简得, =,=. 45(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第一小题满分4分,第二小题满分9分.在平面直角坐标系中,点在轴正半轴上,点在轴上,其横坐标为,且 是首项为1、公比为2的等比数列,记,.(1)若,求点的坐标;(2)若点的坐标为,求的最大值及相应

11、的值.P20xyAP1P3P4解(1)(2)【答案】解(1)设,根据题意,.由,知, 而, 所以,解得或. 故点的坐标为或. (2)由题意,点的坐标为,. . 因为,所以, 当且仅当,即时等号成立. 易知在上为增函数, 因此,当时,最大,其最大值为. 46(2013年高考江西卷(理)在ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(conA-3sinA)cosB=0.(1)求角B的大小;若a+c=1,求b的取值范围【答案】解:(1)由已知得 即有 因为,所以,又,所以, 又,所以. (2)由余弦定理,有. 因为,有. 又,于是有,即有. 遇到失意伤心事,多想有一个懂你的人来指点

12、迷津,因他懂你,会以我心,换你心,站在你的位置上思虑,为你排优解难。一个人,来这世间,必须懂得一些人情事理,才能不断成长。就像躬耕于陇亩的农人,必须懂得土地与种子的情怀,才能有所收获。一个女子,一生所求,莫过于找到一个懂她的人,执手白头,相伴终老。即使芦花暖鞋,菊花枕头,也觉温暖;即使粗食布衣,陋室简静,也觉舒适,一句“懂你”,叫人无怨无悔,愿以自己的一生来交付。懂得是彼此的欣赏,是灵魂的轻唤,是惺惺相惜,是爱,是暖,是彼此的融化;是走一段很远的路,蓦然回首却发现,我依然在你的视线里;是回眸相视一笑的无言;是一条偏僻幽静的小路,不显山,不露水,路边长满你喜爱的花草,静默无语却馨香盈怀,而路的尽头,便是通达你心灵的小屋瑟瑟严冬,窗外雪飘,絮絮自语说了这多,你可懂我了吗?若你知晓,无需说话,只报一声心灵的轻叹,那,便是我的花开春暖。你相不相信,人生有一种念想,不求奢华不求结果,不求你在我身边,只愿有一种陪伴暖在心灵,那,便是懂得。有人懂得是一种幸福,懂得别人是一种襟怀,互为懂得是一种境界。懂得,真好!专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁