对勾函数的性质及应用.doc

上传人:飞****2 文档编号:15016507 上传时间:2022-05-10 格式:DOC 页数:5 大小:383.50KB
返回 下载 相关 举报
对勾函数的性质及应用.doc_第1页
第1页 / 共5页
对勾函数的性质及应用.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《对勾函数的性质及应用.doc》由会员分享,可在线阅读,更多相关《对勾函数的性质及应用.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上对勾函数的性质及应用一、 对勾函数的图像与性质:1. 定义域: 2. 值域:3. 奇偶性:奇函数,函数图像整体呈两个“对勾”的形状,且函数图像关于原点呈中心对称,即4. 图像在一、三象限, 当时,(当且仅当取等号),即在x=时,取最小值 由奇函数性质知:当x0时,在x=时,取最大值5. 单调性:增区间为(),(),减区间是(0,),(,0)二、 对勾函数的变形形式类型一:函数的图像与性质1.定义域: 2.值域:3.奇偶性:奇函数,函数图像整体呈两个“对勾”的形状.4.图像在二、四象限, 当x0时,在x=时,取最小值;当时,在x=时,取最大值5. 单调性:增区间为(0,

2、),(,0)减区间是(),(),类型二:斜勾函数作图如下1.定义域: 2.值域:R3.奇偶性:奇函数4.图像在二、四象限,无最大值也无最小值.5.单调性:增区间为(-,0),(0,+).作图如下:1.定义域: 2.值域:R3.奇偶性:奇函数 4.图像在二、四象限,无最大值也无最小值.5.单调性:减区间为(-,0),(0,+).类型三:函数。此类函数可变形为,可由对勾函数上下平移得到练习1.函数的对称中心为 类型四:函数此类函数可变形为,则可由对勾函数左右平移,上下平移得到练习 1.作函数与的草图 2.求函数在上的最低点坐标 3. 求函数的单调区间及对称中心类型五:函数。此类函数定义域为,且可变

3、形为a.若,图像如下:1 定义域: 2. 值域: 3. 奇偶性:奇函数. 4. 图像在一、三象限.当时,在时,取最大值,当x0时,在x=时,取最小值5. 单调性:减区间为(),();增区间是练习1.函数的在区间上的值域为 b. 若,作出函数图像:1 定义域: 2. 值域: 3. 奇偶性:奇函数. 4. 图像在一、三象限.当时,在时,取最小值,当x0时,在x=时,取最大值5. 单调性:增区间为(),();减区间是练习1.如,则的取值范围是 类型六:函数.可变形为, 则可由对勾函数左右平移,上下平移得到练习1.函数由对勾函数向 (填“左”、“右”)平移 单位,向 (填“上”、“下”)平移 单位.2.已知 ,求函数的最小值;3.已知 ,求函数的最大值类型七:函数练习1.求函数在区间上的最大值;若区间改为则的最大值为 2.求函数在区间上的最大值类型八:函数.此类函数可变形为标准形式:练习1.求函数的最小值;2求函数的值域;3.求函数的值域类型九:函数。此类函数可变形为标准形式:练习 1.求函数的最小值; 2. 求函数的值域专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁