《求数列通项公式的方法总结.docx》由会员分享,可在线阅读,更多相关《求数列通项公式的方法总结.docx(1页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上求数列an通项公式的方法1=+型累加法:=()+()+()+ =+例1.已知数列满足=1,=+(nN+),求.解 =+ =+1 =1 =1 (nN+)3=p+q 型(p、q为常数)方法:(1)+=, 再根据等比数列的相关知识求. (2)= 再用累加法求. (3)=+,先用累加法求再求.例3.已知的首项=a(a为常数),=2+1(nN+,n2),求.解 设=2(),则=1+1=2(+1)为公比为2的等比数列.+1=(a+1)=(a+1)12型累乘法:=例2.已知数列满足(nN+),=1,求.解 = =(n1)(n2)11=(n1)! =(n1)! (nN+)4=p+型(
2、p为常数) 方法:变形得=+,则可用累加法求出,由此求.例4.已知满足=2,=2+.求.解 =+1为等差数列.=n5= pq 型(p、q为常数)特征根法:(1)时,=+(2)时,=(+n)例5.数列中,=2,=3,且2=+(nN+,n2),求.解 =2 =(+n)=+n 7“已知,求”型方法:=(注意是否符合)例6.设为的前n项和,=(1),求(nN+)解 =(1) (nN+)当n=1时,=(1)=3当n2时,=(1)(1)=3 =(nN+)6= 型(A、B、C、D为常数)特征根法:=(1)时,=C(2)时, =例6. 已知=1,=(nN+),求.解 = =+C =1,=,代入,得C= 为首项为1,d=的等差数列.= =(nN+)8“已知,的关系,求”型方法:构造与转化的方法.例8. 已知的前n项和为,且+2()=0(n2),=,求.解 依题意,得+2=0=2=+2(n)=2n= ,=-=2=()=专心-专注-专业