计数原理和二项式专题-排列组合问题解法(共15页).doc

上传人:飞****2 文档编号:14998066 上传时间:2022-05-10 格式:DOC 页数:15 大小:699KB
返回 下载 相关 举报
计数原理和二项式专题-排列组合问题解法(共15页).doc_第1页
第1页 / 共15页
计数原理和二项式专题-排列组合问题解法(共15页).doc_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《计数原理和二项式专题-排列组合问题解法(共15页).doc》由会员分享,可在线阅读,更多相关《计数原理和二项式专题-排列组合问题解法(共15页).doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上计数原理和二项式专题排列组合题型总结 排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。一 直接法1 特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。分析:(1)个位和千位有5个数字可供选择,其余2位有四个可供选择,由乘法原理:=2402特殊位置法(2)当1在千位时余下三位有=60,1不在千位时,千位有种

2、选法,个位有种,余下的有,共有=192所以总共有192+60=252二 间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法=252例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书? 分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数个,其中0在百位的有个,这是不合题意的。故共可组成不同的三位数-=432(个)三 插空法 当需排元素中有不能相邻的元素时,宜用插空法。 例3 在一个含有8个节目的节目单中

3、,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法? 分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有=100中插入方法。四 捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?分析:先将男生捆绑在一起看成一个大元素与女生全排列有种排法,而男生之间又有种排法,又乘法原理满足条件的排法有:=576练习1四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种()2 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,

4、其余只参观一天,则植物园30天内不同的安排方法有()(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有其余的就是19所学校选28天进行排列)五 阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有种练习1.(a+b+c+d)15有多少项? 当项中只有一个字母时,有种(即a.b.c.d而指数只有15故。当项中有2个字母时,有而指

5、数和为15,即将15分配给2个字母时,如何分,闸板法一分为2,即当项中有3个字母时指数15分给3个字母分三组即可当项种4个字母都在时 四者都相加即可练习2有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法?()3不定方程X1+X2+X3+X50=100中不同的整数解有()六 平均分堆问题 例6 6本不同的书平均分成三堆,有多少种不同的方法? 分析:分出三堆书(a1,a2),(a3,a4),(a5,a6)由顺序不同可以有=6种,而这6种分法只算一种分堆方式,故6本不同的书平均分成三堆方式有=15种练习:16本书分三份,2份1本,1份4本,

6、则有不同分法?2某年级6个班的数学课,分配给甲乙丙三名数学教师任教,每人教两个班,则分派方法的种数。七 合并单元格解决染色问题例7 (全国卷(文、理)如图1,一个地区分为5个行政区域,现给地图着色,要求相邻区域不 得使用同一颜色,现有四种颜色可供选择,则不同的着色方法共有 种(以数字作答)。 分析:颜色相同的区域可能是2、3、4、5 下面分情况讨论: ()当2、4颜色相同且3、5颜色不同时,将2、4合并成一个单元格,此时不同的着色方法相当于4个元素 的全排列数 ()当2、4颜色不同且3、5颜色相同时,与情形()类似同理可得 种着色法()当2、4与3、5分别同色时,将2、4;3、5分别合并,这样

7、仅有三个单元格 从4种颜色中选3种来着色这三个单元格,计有种方法 由加法原理知:不同着色方法共有2=48+24=72(种)练习1(天津卷(文)将3种作物种植 12345 在如图的5块试验田里,每快种植一种作物且相邻的试验田不能种植同一作物 , 不同的种植方法共 种(以数字作答) (72)2(江苏、辽宁、天津卷(理)某城市中心广场建造一个花圃,花圃6分为个部分(如图3),现要栽种4种颜色的花,每部分栽种一种且相邻部分不能栽种 同一样颜色的话,不同的栽种方法有 种(以数字作答)(120)图3 图43如图4,用不同的5种颜色分别为ABCDE五部分着色,相邻部分不能用同一颜色,但同一种颜色可以反复使用

8、也可以不用,则符合这种要求的不同着色种数(540)4如图5:四个区域坐定4个单位的人,有四种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两区域的颜色不同,不相邻区域颜色相同,不相邻区域颜色相同与否不受限制,那么不同的着色方法是 种(84)图5 图65将一四棱锥(图6)的每个顶点染一种颜色,并使同一条棱的两端点异色,若只有五种颜色可供使用,则不同的染色方法共 种(420) 八 递推法例八 一楼梯共10级,如果规定每次只能跨上一级或两级,要走上这10级楼梯,共有多少种不同的走法?分析:设上n级楼梯的走法为an种,易知a1=1,a2=2,当n2时,上n级楼梯的走法可分两类:第一类:是最

9、后一步跨一级,有an-1种走法,第二类是最后一步跨两级,有an-2种走法,由加法原理知:an=an-1+ an-2,据此,a3=a1+a2=3,a4=a#+a2=5,a5=a4+a3=8,a6=13,a7=21,a8=34,a9=55,a10=89.故走上10级楼梯共有89种不同的方法。九.几何问题 1四面体的一个顶点位A,从其它顶点与各棱中点取3个点,使它们和点A在同一平面上,不同的取法有 种(3+3=33)2.四面体的棱中点和顶点共10个点(1)从中任取3个点确定一个平面,共能确定多少个平面?(-4+4-3+3-6C+6+26=29) (2)以这10个点为顶点,共能确定多少格凸棱锥? 三棱

10、锥 C104-4C64-6C44-3C44=141 四棱锥 644=96 36=18 共有114十 先选后排法例9 有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选派4人承担这三项任务,不同的选派方法有( )A.1260种B.2025种C.2520种D.5054种分析:先从10人中选出2人十一用转换法解排列组合问题例10某人连续射击8次有四次命中,其中有三次连续命中,按“中”与“不中”报告结果,不同的结果有多少种解 把问题转化为四个相同的黑球与四个相同白球,其中只有三个黑球相邻的排列问题=20种例11 个人参加秋游带10瓶饮料,每人至少带1瓶,一共有多少钟不同的带法解 把问题转化

11、为5个相同的白球不相邻地插入已经排好的10个相同的黑球之间的9个空隙种的排列问题=126种例12 从1,2,3,1000个自然数中任取10个不连续的自然数,有多少种不同的去法解 把稳体转化为10个相同的黑球与990个相同白球,其其中黑球不相邻的排列问题。例13 某城市街道呈棋盘形,南北向大街5条,东西向大街4条,一人欲从西南角走到东北角,路程最短的走法有多少种解 无论怎样走必须经过三横四纵,因此,把问题转化为3个相同的白球与四个相同的黑球的排列问题=35(种)例14 一个楼梯共18个台阶12步登完,可一步登一个台阶也可一步登两个台阶,一共有多少种不同的走法解 根据题意要想12步登完只能6个一步

12、登一个台阶,6个一步登两个台阶,因此,把问题转化为6个相同的黑球与6个相同的白球的排列问题=924(种)例15 求(a+b+c)10的展开式的项数解 展开使的项为abc,且+=10,因此,把问题转化为2个相同的黑球与10个相同的白球的排列问题=66(种)例16 亚、欧乒乓球对抗赛,各队均有5名队员,按事先排好的顺序参加擂台赛,双方先由1号队员比赛,负者淘汰,胜者再与负方2号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程那么所有可能出现的比赛过程有多少种?解 设亚洲队队员为a1,a2,,a5,欧洲队队员为b1,b2,b5,下标表示事先排列的出场顺序,若以依次被淘汰的队员为顺序比赛过

13、程转化为这10个字母互相穿插的一个排列,最后师胜队种步被淘汰的队员和可能未参加参赛的队员,所以比赛过程可表示为5个相同的白球和5个相同黑球排列问题,比赛过程的总数为=252(种)十二转化命题法例17 圆周上共有15个不同的点,过其中任意两点连一弦,这些弦在圆内的交点最多有多少各?分析:因两弦在圆内若有一交点,则该交点对应于一个以两弦的四端点为顶点的圆内接四边形,则问题化为圆周上的15个不同的点能构成多少个圆内接四边形,因此这些现在圆内的交点最多有=1365(个)十三概率法例18 一天的课程表要排入语文、数学、物理、化学、英语、体育六节课,如果数学必须排在体育之前,那么该天的课程表有多少种排法?

14、分析:在六节课的排列总数中,体育课排在数学之前与数学课排在体育之前的概率相等,均为,故本例所求的排法种数就是所有排法的,即A=360种十四除序法 例19 用1,2,3,4,5,6,7这七个数字组成没有重复数字的七位数中,(1)若偶数2,4,6次序一定,有多少个?(2)若偶数2,4,6次序一定,奇数1,3,5,7的次序也一定的有多少个? 解(1)(2)十五错位排列例20 同室四人各写一张贺卡,先集中起来,然后每人从中拿一张别人送出的卡片,则不同的分配方法有 种(9)公式 1) n=4时a4=3(a3+a2)=9种 即三个人有两种错排,两个人有一种错排2)=n!(1-+-+练习 有五位客人参加宴会

15、,他们把帽子放在衣帽寄放室内,宴会结束后每人戴了一顶帽子回家,回家后,他们的妻子都发现他们戴了别人的帽子,问5位客人都不戴自己帽子的戴法有多少种?(44)计数原理 练习题1从集合 0,1,2,3,4,5,6中任取两个互不相等的数,组成复数,其中虚数有() A30个B42个C36个D35个2如图,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求邻 的矩形涂色不同,则不同的涂法有() A72种B48种C24种D12种3教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有() A10种B种C种D种4一件工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成,从中选出1人

16、来完成这件工作,不同选法的种数是() A8 B15C16D305从甲地去乙地有3班火车,从乙地去丙地有2班轮船,则从甲地去丙地可选择的旅行方式有() A5种B6种C7种D8种6如图所示为一电路图,从A到B共有( )条不同的线路可通电. A1 B2 C3D47由数字0,1,2,3,4可组成无重复数字的两位数的个数是() A25B20C16 D128李芳有4件不同颜色的衬衣,3件不同花样的裙子,另有两套不同样式的连衣裙“五一”节需选择一套服装参加歌舞演出,则李芳有()种不同的选择方式. A24B14C10 D99设A,B是两个非空集合,定义,若, 则P*Q中元素的个数是()来源:学科网 A4 B7

17、C12 D1610某商业大厦有东南西3个大门,楼内东西两侧各有2个楼梯,从楼外到二楼的不同走法种数是( ) A 5 B7 C10 D12113科老师都布置了作业,在同一时刻4名学生都做作业的可能情况有( ) A43种 B34种 C432种 D 123种来源:学。科。网12把4张同样的参观券分给5个代表,每人最多分一张,参观券全部分完,则不同的分法共有( ) A120种 B1024种 C625种 D5种13已知集合M=l,2,3,N=4,5,6,7,从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是( ) A18 B17 C16 D10来源:学+

18、科+网14如图,某城市中,M、N两地有整齐的道路网,若规定只能向东 或向北两个方向沿途中路线前进,则从M到N不同的走法共有( ) A25 B15 C13 D10来源:学科网ZXXK15把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法共有() A4种B5种C6种D7种16三边长均为正整数,且最大边长为11的三角形的个数为() A25B26C36D3717如图,从AC,有种不同走法 18将三封信投入4个邮箱,不同的投法有种19某书店有不同年级的语文、数学、英语练习册各10本,买其中一种有 种方法;买其中两种有 种方法20大小不等的两个正方形玩具,分别在各面上标有数字1,2,3,4,5

19、,6,则向上的面标着的两个数字之积不少于20的情形有 种21从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到 个不同的对数值来源:学科网22某班宣传小组要出一期向英雄学习的专刊,现有红、黄、白、绿、蓝五种颜色的粉笔供选用,要求在黑板中A、B、C、D每一部分只写一种颜色,如图所示,相邻两块颜色不同,则不同颜色的书写方法共有 种23平面内有7个点,其中有5个点在一条直线上,此外无三点共线,经过这7个点可连成不同直线的条数是24圆周上有个等分点(),以其中三个点为顶点的直角三角形的个数为25椭圆的焦点在y轴上,且,则这样的椭圆的个数为26多项式展开后共有项 27整数63

20、0的正约数(包括1和630)共有个28商店里有15种上衣,18种裤子,某人要买一件上衣或一条裤子,共有 种不同的选法;要买上衣,裤子各一件,共有 种不同的选法29电子计算机的输入纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产生种不同的信息30十字路口来往的车辆,如果不允许回头,共有种行车路线31某校学生会由高一年级5人,高二年级6人,高三年级4人组成 (1)选其中1人为学生会主席,有多少种不同的选法? (2)若每年级选1人为校学生会常委,有多少种不同的选法? (3)若要选出不同年级的两人参加市里组织的活动,有多少种不同的选法?32已知集合是平面上的点,来源:Zxxk.Com(1

21、)可表示平面上多少个不同的点?(2)可表示多少个坐标轴上的点? 33有红、黄、蓝三种颜色旗子各面,任取其中三面,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗子中不允许有三面相同颜色的旗子,可以有多少种不同的信号?若所升旗子颜色各不相同,有多少种不同的信号?34某出版社的7名工人中,有3人只会排版,2人只会印刷,还有2人既会排版又会印刷, 现从7人中安排2人排版,2人印刷,有几种不同的安排方法35用0,1,2,3,4,5六个数字组成无重复数字的四位数,比3410大的四位数有多少个? 36甲、乙两个正整数的最大公约数为60,求甲、乙两数的公约数共有多个?37从3,2,1,0,l,2,3中

22、,任取3个不同的数作为抛物线方程y=ax2bxc(a0)的系数,如果抛物线过原点,且顶点在第一象限,这样的抛物线共有多少条?38电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,乙信箱中有20封现由主持人抽奖确定幸运观众,有多少种不同的结果?若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?参考答案:116 CADA BDCB CDBD BBAC17、 6 18、 19、 30;300 20、 5 21、 17 22、18023、 12 24、 来源 25、 20 26、 10 27、 24 28、33,27029、

23、256 30、 12 31、解:(1)种;(2)种;(3)种32、解:(1)完成这件事分为两个步骤:a的取法有6种,b的取法也有6种,P点个数为N=66=36(个); (2)根据分类加法计数原理,分为三类: x轴上(不含原点)有5个点; y轴上(不含原点)有5个点; 既在x轴,又在y轴上的点,即原点也适合, 共有N=5+5+1=11(个)33、解: =333=27种;种; 种34、解:首先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版又会印刷”中的一个作为分类的标准下面选择“既会排版又会印刷”作为分类的标准,按照被选出的人数,可将问题分为三类: 第一类:2人全不被选出,即从只

24、会排版的3人中选2人,有3种选法;只会印刷的2人全被选出,有1种选法,由分步计数原理知共有31=3种选法 第二类:2人中被选出一人,有2种选法若此人去排版,则再从会排版的3人中选1人,有3种选法,只会印刷的2人全被选出,有1种选法,由分步计数原理知共有231=6种选法;若此人去印刷,则再从会印刷的2人中选1人,有2种选法,从会排版的3人中选2人,有3种选法,由分步计数原理知共有232=12种选法;再由分类计数原理知共有6+12=18种选法 第三类:2人全被选出,同理共有16种选法 所以共有3+18+16=37种选法来源:学科网35、解:本题可以从高位到低位进行分类 来源:Z.xx.k.Com(

25、1)千位数字比3大(2)千位数字为3: 百位数字比4大; 百位数字为4: 1十位数字比1大; 2十位数字为1 个位数字比0大 所以比3410大的四位数共有2543+43+23+2=140(个)36、37、38、例说二项式定理的常见题型及解法二项式定理的问题相对较独立,题型繁多,解法灵活且比较难掌握。二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系。二项式定理在每年的高考中基本上都有考到,题型多为选择题,填空题,偶尔也会有大题出现。本文将针对高考试题中常见的二项式定理题目类型一一分析如下,希望能够起到抛砖引玉的作用。一、求二项展开式1“”型的展开式例1求的

26、展开式;解:原式= = = 小结:这类题目一般为容易题目,高考一般不会考到,但是题目解决过程中的这种“先化简在展开”的思想在高考题目中会有体现的。2 “”型的展开式 例2求的展开式;分析:解决此题,只需要把改写成的形式然后按照二项展开式的格式展开即可。本题主要考察了学生的“问题转化”能力。3二项式展开式的“逆用”例3计算;解:原式=小结:公式的变形应用,正逆应用,有利于深刻理解数学公式,把握公式本质。二、通项公式的应用1确定二项式中的有关元素例4已知的展开式中的系数为,常数的值为 解: 令,即依题意,得,解得2确定二项展开式的常数项例5展开式中的常数项是 解: 令,即。 所以常数项是3求单一二

27、项式指定幂的系数例6(03全国)展开式中的系数是 ;解:= 令则,从而可以得到的系数为: ,填三、求几个二项式的和(积)的展开式中的条件项的系数例7的展开式中,的系数等于 解:的系数是四个二项展开式中4个含的,则有 例8(02全国)的展开式中,项的系数是 ; 解:在展开式中,的来源有: 第一个因式中取出,则第二个因式必出,其系数为; 第一个因式中取出1,则第二个因式中必出,其系数为的系数应为:填。四、利用二项式定理的性质解题1 求中间项例9求(的展开式的中间项;解:展开式的中间项为 即:。 当为奇数时,的展开式的中间项是和;当为偶数时,的展开式的中间项是。2 求有理项例10求的展开式中有理项共

28、有 项;解:当时,所对应的项是有理项。故展开式中有理项有4项。 当一个代数式各个字母的指数都是整数时,那么这个代数式是有理式; 当一个代数式中各个字母的指数不都是整数(或说是不可约分数)时,那么这个代数式是无理式。3 求系数最大或最小项(1) 特殊的系数最大或最小问题例11(00上海)在二项式的展开式中,系数最小的项的系数是 ;解:要使项的系数最小,则必为奇数,且使为最大,由此得,从而可知最小项的系数为(2) 一般的系数最大或最小问题 例12求展开式中系数最大的项; 解:记第项系数为,设第项系数最大,则有 又,那么有 即 解得,系数最大的项为第3项和第4项。(3) 系数绝对值最大的项例13在(

29、的展开式中,系数绝对值最大项是 ;解:求系数绝对最大问题都可以将“”型转化为型来处理,故此答案为第4项,和第5项。五、利用“赋值法”求部分项系数,二项式系数和 例14若, 则的值为 ; 解: 令,有, 令,有 故原式= =在用“赋值法”求值时,要找准待求代数式与已知条件的联系,一般而言:特殊值在解题过程中考虑的比较多。 例15设, 则 ;分析:解题过程分两步走;第一步确定所给绝对值符号内的数的符号;第二步是用赋值法求的化简后的代数式的值。 解: = =0六、利用二项式定理求近似值 例16求的近似值,使误差小于; 分析:因为=,故可以用二项式定理展开计算。 解:= , 且第3项以后的绝对值都小于

30、, 从第3项起,以后的项都可以忽略不计。 =小结:由,当的绝对值与1相比很小且很大时,等项的绝对值都很小,因此在精确度允许的范围内可以忽略不计,因此可以用近似计算公式:,在使用这个公式时,要注意按问题对精确度的要求,来确定对展开式中各项的取舍,若精确度要求较高,则可以使用更精确的公式:。 利用二项式定理求近似值在近几年的高考没有出现题目,但是按照新课标要求,对高中学生的计算能力是有一定的要求,其中比较重要的一个能力就是估算能力。所以有必要掌握利用二项式定理来求近似值。七、利用二项式定理证明整除问题 例17求证:能被7整除。 证明: = = =49P+() 又 =(7+1) = =7Q(Q) 能被7整除。在利用二项式定理处理整除问题时,要巧妙地将非标准的二项式问题化归到二项式定理的情境上来,变形要有一定的目的性,要凑 出相关的因数。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁