《电磁场数值分析.docx》由会员分享,可在线阅读,更多相关《电磁场数值分析.docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上 电磁场数值分析(作业)- 2016学年 -学 院: 学 号: 姓 名: 联系方式: 任课教师: 2016年6月6日作业1一个二维正方形(边长a=10mm)的静电场区域,电位边界条件如图所示(单位:V),求区域内的电位分布。要求用超松弛迭代法求解差分方程组进行计算。 代码:hx=11;hy=11;v1=zeros(hy,hx);v1(hy,:)=ones(1,hx)*100;v1(1,:)=ones(1,hx)*50;for i=1:hy; v1(i,1)=0; v1(i,hx)=100;endw=2/(1+sin(pi/(hx-1);maxt=1;t=0;v2=v1
2、;n=0;while(maxt1e-6) n=n+1; maxt=0; for i=2:hy-1; for j=2:hx-1; v2(i,j)=(1-w)*v1(i,j)+w*(v1(i+1,j)+v1(i,j+1)+v2(i-1,j)+v2(i,j-1)/4; t=abs(v2(i,j)-v1(i,j); if (tmaxt) maxt=t; end end end v1=v2;endsubplot(1,2,1)mesh(v2)axis(0,11,0,11,0,100)subplot(1,2,2)contour(v2,20) 结果:作业2模拟真空中二维TM电磁波的传播,边界设置为一阶Mur吸
3、收边界,观察电磁波的传播过程。波源为正弦函数: 代码:xmesh=150;ymesh=150;mu0=4*pi*(1.0e-7);eps0=8.85e-12;c=3.0e-8;dx=1.0;dt=0.7*dx/c;timestep=200;ez(1:xmesh+1,1:ymesh+1)=0.0;hx(1:xmesh+1,1:ymesh)=0.0;hy(1:xmesh,1:ymesh+1)=0.0;coef1=dt/(mu0*dx);coef2=dt/(eps0*dx);coef3=(c*dt-dx)/(c*dt+dx);ezold=ez;for now=1:timestep; hx=hx-co
4、ef1*(ez(:,2:ymesh+1)-ez(:,1:ymesh); hy=hy+coef1*(ez(2:xmesh+1,:)-ez(1:xmesh,:); ez(2:xmesh,2:ymesh)=ez(2:xmesh,2:ymesh)-. coef2*(hx(2:xmesh,2:ymesh)-hx(2:xmesh,1:ymesh-1)-. coef2*(hy(2:xmesh,2:ymesh)-hy(1:xmesh-1,2:ymesh); ez(1,:)=ezold(2,:)+coef3*(ez(2,:)-ezold(1,:); ez(xmesh+1,:)=ezold(xmesh,:)+co
5、ef3*(ez(xmesh,:)-ezold(xmesh+1,:); ez(:,1)=ezold(:,2)+coef3*(ez(:,2)-ezold(:,1); ez(:,ymesh+1)=ezold(:,ymesh)+coef3*(ez(:,ymesh)-ezold(:,ymesh+1); ez(xmesh/2+1,ymesh/2+1)=sin(now*dt*2*pi*c/25.0); mesh(ez) pause(0.01) ezold=ez;end 结果:作业3基于Pocklington方程用MoM分析半波对称振子天线:观察天线线径和分段数目分别取不同值对天线阻抗和辐射特性的影响 (半径
6、分别取 0.001, 0.0001, 0.00001,分段数取11,21,31) 代码:%初始化参数c=3e-8;r=1;f=c/r;w=2*pi*f;e0=8.85e-12;u0=4*pi*1e-7;a=0.0001*r;L=0.5*r;k=2*pi/r;N=31;dl=L/(N+1);l=L/2-dl/2;lz=-l:dl:1;lzs=lz(1:N);lzm=lz(1:N)+dl/2;lze=lz(2:N+1);%阻抗矩阵元素求解fi=log(dl/a)/(2*pi*dl)-k/(4*pi)*1j;fi_1=exp(-k*dl*1j)/(4*pi*dl);fi_2=exp(-k*2*dl*
7、1j)/(8*pi*dl);z=ones(N,N);for m=1:N for n=1:N if m=n fi1=fi; fi2=fi_1; fi3=fi_2; z(m,n)=(k2*dl2-2)*fi1+fi2+fi3); elseif abs(m-n)=1 fi1=fi_1; fi2=fi; fi3=fi_2; z(m,n)=(k2*dl2-2)*fi+fi2+fi3); else fi1=exp(-k*abs(m-n)*dl*1j)/(4*pi*abs(m-n)*dl); fi2=exp(-k*abs(m+1-n)*dl*1j)/(4*pi*abs(m+1-n)*dl); fi3=exp
8、(-k*abs(n+1-m)*dl*1j)/(4*pi*abs(n+1-m)*dl); z(m,n)=(k2*dl2-2)*fi+fi2+fi3); end endend%电压矩阵求解V=zeros(N,1);V(N+1)/2)=-1*(1j*w*e0);I=zV;Z_in=1/I(N+1)/2);disp(输入阻抗=,num2str(Z_in)I_amp=abs(I);Max=max(I_amp);Iunit2=0;I_amp/Max(1);0;figure(1)h=0:dl/r:L/r;Ithe=sin(pi*h*r/L);plot(h,Iunit2,b,h,Ithe,r,linewidt
9、h,2)legend(pocklinton,解析值)grid onxlabel(电长度)ylabel(归一化电流)%方向图theta=0:0.01:2*pi;abs_f=zeros(1,length(theta);for n=1:1:N abs_f=abs_f+I(n)*exp(k*(n*dl-L/2)*cos(theta)*1j);endabs_f=abs(sin(theta)*dl.*abs_f);Max_f=abs(sum(I)*dl);Far_patten2=abs_f/Max_f(1);theta_2=0:0.1:2*pi;Far_theory=abs(cos(k*(L/2)*cos
10、(theta_2)-cos(k*L/2)./sin(theta_2);figure(2)polar(theta,Far_patten2,-b)hold onpolar(theta_2,Far_theory,or)hold offlegend(pocklinton,解析值)title(半波阵子天线E面方向图)figure(3)polar(theta,ones(1,length(theta),-b)title(半波阵子天线H面方向图)%半波阵子增益I_in=I(N+1)/2);A=(w*u0)2/(4*pi*sqrt(u0/e0)*real(Z_in)*(abs(I_in)2);G_theta=A
11、*abs_f.2;Max_gain=max(G_theta);Max_gain_dB=10*log10(Max_gain);disp(半波阵子增益=,sprintf(%.4fdB,Max_gain_dB) 结果:作业4基于电场积分方程用MoM分析对称振子天线:计算振子总长度分别为0.25 ,0.5,1.5时,振子的输入阻抗和E面方向图。 代码:lamda=1;a=0.0001;me=8.85e-12;mu=4*pi*(1e-7);arg=2*pi*(3e-8)/lamda;L=0.2*lamda;k=2*pi/lamda;N=21;dL=L/(N+1);l=L/2-dL/2;lz=-l:dL:
12、1;lzs=lz(1:N);lzm=lz(1:N)+dL/2;lze=lz(2:N+1);for m=1:N for n=1:N if n=m Fmnmm=(1/(2*pi*dL)*log(dL/a)-1j*k/(4*pi); Fmnee=(1/(2*pi*dL)*log(dL/a)-1j*k/(4*pi); Fmnss=(1/(2*pi*dL)*log(dL/a)-1j*k/(4*pi); Fmnse=exp(-1j*k*dL)/(4*pi*dL); Fmnes=exp(-1j*k*dL)/(4*pi*dL); elseif abs(n-m)=1 Fmnmm=exp(-1j*k*dL)/(4
13、*pi*dL); Fmnee=exp(-1j*k*dL)/(4*pi*dL); Fmnss=exp(-1j*k*dL)/(4*pi*dL); if nm Fmnse=exp(-1j*k*2*dL)/(4*pi*2*dL); Fmnes=exp(1/(2*pi*dL)*log(dL/a)-1j*k/(4*pi); else Fmnes=exp(-1j*k*2*dL)/(4*pi*2*dL); Fmnse=exp(1/(2*pi*dL)*log(dL/a)-1j*k/(4*pi); end else num=abs(n-m); Fmnmm=exp(-1j*k*num*dL)/(4*pi*num*d
14、L); Fmnee=exp(-1j*k*num*dL)/(4*pi*num*dL); Fmnss=exp(-1j*k*num*dL)/(4*pi*num*dL); if nm Fmnse=exp(-1j*k*(num+1)*dL)/(4*pi*(num+1)*dL); Fmnes=exp(-1j*k*(num-1)*dL)/(4*pi*(num-1)*dL); else Fmnes=exp(-1j*k*(num+1)*dL)/(4*pi*(num+1)*dL); Fmnse=exp(-1j*k*(num-1)*dL)/(4*pi*(num-1)*dL); end end z(m,n)=1j*a
15、rg*mu*dL*dL*Fmnmm+(1/(1j*arg*me)*(Fmnee-Fmnes-Fmnse-Fmnss); endendV=zeros(N,1);fedp=(N+1)/2;V(fedp)=1;I=linsolve(z,V);Z=V(fedp)/I(fedp);theta=0:pi/100:2*pi;ftheta=0;for m=1:length(theta) F(m)=0; for n=1:N F(m)=F(m)+I(n)*exp(1j*k*(n-fedp)*dL*cos(theta(m); endendF=abs(F);F1=F/max(F);polar(theta,F1,b.-) 结果:作业5对课程的建议、自己的收获等。 通过学习这门与数学和计算机编程联系紧密的课程,我发现自己数学理论知识还不是很扎实,而且自己对MATLAB的使用也不是很熟练,希望自己在今后能够加强对这方面知识的学习。在学习的过程中也锻炼了自己对所学知识的应用,增加了自己的学习兴趣。 专心-专注-专业