均值不等式常见题型整理(共4页).doc

上传人:飞****2 文档编号:14982944 上传时间:2022-05-10 格式:DOC 页数:4 大小:194.50KB
返回 下载 相关 举报
均值不等式常见题型整理(共4页).doc_第1页
第1页 / 共4页
均值不等式常见题型整理(共4页).doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《均值不等式常见题型整理(共4页).doc》由会员分享,可在线阅读,更多相关《均值不等式常见题型整理(共4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上均值不等式一、 基本知识梳理1.算术平均值:如果abR+,那么 叫做这两个正数的算术平均值.2.几何平均值:如果abR+,那么 叫做这两个正数的几何平均值3.重要不等式:如果abR,那么a2+b2 (当且仅当a=b时,取“=”) 均值定理:如果abR+,那么 (当且仅当a=b时,取“=”)均值定理可叙述为: 4变式变形:5.利用均值不等式求最值,“和定,积最大;积定,和最小”,即两个正数的和为定值,则可求其积的最大值;积为定值,则可求其和的最小值。注意三个条件:“一正,二定,三相等”即:(1)各项或各因式非负;(2)和或积为定值;(3)各项或各因式都能取得相等的值。6

2、.若多次用均值不等式求最值,必须保持每次取“=”号的一致性。有时为了达到利用均值不等式的条件,需要经过配凑裂项转化分离常数等变形手段,创设一个应用均值不等式的情景。二、 常见题型:1、分式函数求最值,如果可表示为的形式,且在定义域内恒正或恒负,则可运用均值不等式来求最值。例:求函数的最小值。解:当即x=0时等号成立,2、题在给出和为定值,求和的最值时,一般情况都要对所求式子进行变形,用已知条件进行代换,变形之后再利用均值不等式进行求最值。例:已知,求的最小值。解法一:思路二:由变形可得然后将变形。 解法二:可以验证:两种解法的等号成立的条件均为。此类题型可扩展为:设均为正数,且,求的最小值。

3、,等号成立的条件是。3、题中所求的式子中带有根式,而且不能直接用均值不等式来求解,则可采用逆向思维来求解,对不等式逆向转换,本类题型一般情况都给出来x的取值范围,根据取值范围来进行逆向转换。例:求函数的最小值。思路:由于所给函数的形式为无理式,直接求解较困难,从所给区间入手,可得一个不等式(当且仅当或时取等号),展开此式讨论即可。 解:即得4、不等式的变形在证明过程中或求最值时,有广泛应用,如:当时,同时除以ab得或。例:已知a,b,c均为,求证:。证明:均为正数,总之,均值不等式是高中数学的重要内容之一,它是求多项式的最值以及函数的值域的常用方法。在应用均值不等式时,不论怎样变形,均需满足“

4、一正二定三相等”的条件。【巩固练习】1、若求函数最值。 答案:2、求函数的值域。 答案:-3,03、已知正数满足求的最小值。答案:4、已知为正数,且,求的最小值。答案:5、若,求的最小值。答案:6、设为整数,求证:。三、利用不等式解题的典型例题解析:题型一:利用均值不等式求最值(值域)例1、(1)已知,求的最小值(2)已知,求的最大值变式1: 1、若,求的值域 2、函数的最大值为 变式2:1、已知且,求的最小值2、,求的最小值3、当为正常数时,求的最小值变式3:1、函数的图象恒过定点,若点A在直线上,其中,则的最小值为 2、求的最小值为 3、已知的最小值为 变式4:1、已知都是正实数,且(1)求的最小值(2)求的最小值题型二:利用均值不等式证明不等式例2、已知,求证:(1)(2)(3)变式5:1、已知且不全相等,求证: 2、已知,且,求证: 3、已知,求证:专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁