《高中数学必修一讲义(共34页).doc》由会员分享,可在线阅读,更多相关《高中数学必修一讲义(共34页).doc(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上高中数学必修一讲义一序言(一)、为什么要学数学? 1.提高思维能力,增长聪明才智; 2.学习与实践的基础; 3.“高考市场”的拳头产品(二)、数学为什么难学? 1.高度的抽象性 2.严密的逻辑性 3.应用的广泛性(三)、如何学好高中数学?1.牢记基础知识; 2.领悟思想方法; 3.把握主干问题; 4.提高运算技能;5.注重理性思维; 6.勇于探索创新; 7.加强数学应用; 8.优化心理品质.(四)、对数学学习有什么要求? 1.专注认真; 2.勤思多练; 3.常做笔记;4.规范作业; 5.加强交流; 6.反思评价.老师寄语:好的开始是成功的一半,新的学期开始了,请大家调
2、整好自己的思想,找到学习的原动力。播种一种思想,收获一种行为;播种一种行为,收获一种习惯;播种一种习惯,收获一种性格;播种一种性格,收获一种命运。愿每位同学都有个好的开始。第一讲:集合的含义.表示及集合间的基本关系(一)集合的有关概念1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。3. 思考1:判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流;(3) 非负奇数;(4)
3、 方程的解;(5) 某校2007级新生;(6) 血压很高的人;(7) 著名的数学家;(8) 平面直角坐标系内所有第三象限的点(9) 全班成绩好的学生。对学生的解答予以讨论、点评,进而讲解下面的问题。4. 关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。(3)无序性:给定一个集合与集合里面元素的顺序无关。(4)集合相等:构成两个集合的元素完全一样。5. 元素与集合的关系;(1)如果a是集合
4、A的元素,就说a属于(belong to)A,记作:aA(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:aA例如,我们A表示“120以内的所有质数”组成的集合,则有3A4A,等等。6集合与元素的字母表示: 集合通常用大写的拉丁字母A,B,C表示,集合的元素用小写的拉丁字母a,b,c,表示。常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R;例题讲解:例1用“”或“”符号填空: (1)8 N; (2)0 N; (3)-3 Z; (4) Q; (5)设A为所有亚洲国家组成的集合,则中国 A
5、,美国 A,印度 A,英国 A。例2已知集合P的元素为, 若3P且-1P,求实数m的值。(二)集合的表示方法我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。(1) 列举法:把集合中的元素一一列举出来,并用花括号“”括起来表示集合的方法叫列举法。如:1,2,3,4,5,x2,3x+2,5y3-x,x2+y2,;说明:1集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。2各个元素之间要用逗号隔开;3元素不能重复; 4集合中的元素可以数,点,代数式等;5对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方
6、能用省略号,象自然数集用列举法表示为例1用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1到20以内的所有质数组成的集合;(4)方程组的解组成的集合。(2)描述法:把集合中的元素的公共属性描述出来,写在花括号内。具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。一般格式:如:x|x-32,(x,y)|y=x2+1,x直角三角形,;说明:描述法表示集合应注意集合的代表元素,如(x,y)|y= x2+3x+2与 y|y= x2+3x+2是不同的两个集合,只
7、要不引起误解,集合的代表元素也可省略,例如:x整数,即代表整数集Z。辨析:这里的 已包含“所有”的意思,所以不必写全体整数。下列写法实数集,R也是错误的。例2试分别用列举法和描述法表示下列集合:(1)方程x22=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合;(3)方程组的解。说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。课堂练习:1用适当的方法表示集合:大于0的所有奇数2集合Ax|Z,xN,则它的元素是 。3已知集合Ax|-3x3,xZ,B(x,y)|yx+1,xA,则集合B用列举法表示是
8、 (三). 子集、空集等概念比较下面几个例子,试发现两个集合之间的关系:(1),;(2)C=|是第一中学2010年9月入学的高一年级同学,D=|是第一中学2010年9月入学的高一年级女同学.(3),1 子集的定义:对于两个集合A,B,如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。 记作: 读作:A包含于(is contained in)B,或B包含(contains)A当集合A不包含于集合B时,记作用Venn图表示两个集合间的“包含”关系:B A 如:(1)中 2 集合相等定义:如果A是集合B的子集,且集合B是集合A的子集,则集合
9、A与集合B中的元素是一样的,因此集合A与集合B相等,即若,则。 如(3)中的两集合。3 真子集定义:若集合,但存在元素,则称集合A是集合B的真子集(proper subset)。记作:A B(或B A) 读作:A真包含于B(或B真包含A) 如:(1)和(2)中A B,C D;4 空集定义:不含有任何元素的集合称为空集(empty set),记作:。用适当的符号填空: ; 0 ; ; 5 几个重要的结论:(1) 空集是任何集合的子集;(2) 空集是任何非空集合的真子集;(3) 任何一个集合是它本身的子集;(4) 对于集合A,B,C,如果,且,那么。说明:1 注意集合与元素是“属于”“不属于”的关
10、系,集合与集合是“包含于”“不包含于”的关系;2 在分析有关集合问题时,要注意空集的地位。例题讲解:例1填空:(1) 2 N; N; A; (2)已知集合Ax|x3x20,B1,2,Cx|x3,Bx|x3,Bx|x6,则AB 。 例题讲解:例1设集合,求AB变式:Ax|-5x8例2设平面内直线上点的集合为L1,直线上点的集合为L2,试用集合的运算表示,的位置关系。例3已知集合 是否存在实数m,同时满足? (m=-2)(二). 全集、补集概念及性质1.全集的定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集(universe set),记作U,是相对于所研究问题
11、而言的一个相对概念。2.补集的定义:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合,叫作集合A相对于全集U的补集(complementary set),记作:,读作:“A在U中的补集”,即用Venn图表示:(阴影部分即为A在全集U中的补集) 讨论:集合A与之间有什么关系?借助Venn图分析 巩固练习(口答):U=2,3,4,A=4,3,B=,则= ,= ;设Ux|x8,且xN,Ax|(x-2)(x-4)(x-5)0,则 ; 设U三角形,A锐角三角形,则 。 例题讲解:例1设集,求,例2设全集,求, ,。 (结论:)例3设全集U为R,若 ,求。 集合复习(一) 集合的基本运算:例1:
12、设U=R,A=x|-5x5,B=x|0x7,求AB、AB、CA 、CB、(CA)(CB)、(CA)(CB)、C(AB)、C(AB)。 说明:不等式的交、并、补集的运算,用数轴进行分析,注意端点。例2:全集U=x|x6或x-3,B=x|axa+3,若AB=A,求实数a的取值范围。 (三)巩固练习:1已知A=x|-2x1,AB=x|x20,AB=x|1x3,求集合B。 2P=0,1,M=x|xP,则P与M的关系是 。3已知50名同学参加跳远和铅球两项测验,分别及格人数为40、31人,两项均不及格的为4人,那么两项都及格的为 人。4满足关系1,2A1,2,3,4,5的集合A共有 个。5已知集合ABx
13、|x8,xN,A1,3,5,6,AB=1,5,6,则B的子集的集合一共有多少个元素? 6已知A1,2,a,B1,a,AB1,2,a,求所有可能的a值。7设Ax|xax60,Bx|xxc0,AB2,求AB。8集合A=x|x2+px-2=0,B=x|x2-x+q=0,若AB=-2,0,1,求p、q。9 A=2,3,a2+4a+2,B=0,7,a2+4a-2,2-a,且AB =3,7,求B。10已知A=x|x3,B=x|4x+m0时,值域;当a0时,值域。 (3)反比例函数的定义域是,值域是。(二)区间及写法:设a、b是两个实数,且a5、x|x-1、x|x0时,求的值。课堂练习: 1 用区间表示下列
14、集合:2 已知函数f(x)=3x5x2,求f(3)、f(-)、f(a)、f(a+1)的值;(二)函数定义域的求法: 函数的定义域通常由问题的实际背景确定,如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合。例1:求下列函数的定义域(用区间表示) f(x)=; f(x)=; f(x)=;*复合函数的定义域求法: (1)已知f(x)的定义域为(a,b),求f(g(x)的定义域;求法:由axb,知ag(x)b,解得的x的取值范围即是f(g(x)的定义域。 (2)已知f(g(x)的定义域为(a,b),求f(x)的定义域;求法:由ax0)的图象进行讨
15、论: 随x的增大,函数值怎样变化? 当xx时,f(x)与f(x)的大小关系怎样?.一次函数、二次函数和反比例函数,在什么区间函数有怎样的增大或减小的性质?定义增函数:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间D上是增函数(increasing function)探讨:仿照增函数的定义说出减函数的定义; 区间局部性、取值任意性定义:如果函数f(x)在某个区间D上是增函数或减函数,就说f(x)在这一区间上具有(严格的)单调性,区间D叫f(x)的单调区间。讨论:图像如何表示单调增、单调减?
16、所有函数是不是都具有单调性?单调性与单调区间有什么关系?一次函数、二次函数、反比例函数的单调性2.教学增函数、减函数的证明:例1将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少?1、 例题讲解例1 如图是定义在区间5,5上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?例2:物理学中的玻意耳定律(k为正常数),告诉我们对于一定量的气体,当其体积V增大时,压强p如何变化?试用单调性定义证明.例3判断函数在区间2,6 上的单调性三、巩固练习:1.求证f(x)x的(0,1)
17、上是减函数,在1,+上是增函数。2.判断f(x)=|x|、y=x的单调性并证明。3.讨论f(x)=x2x的单调性。 推广:二次函数的单调性四、小结:比较函数值的大小问题,运用比较法而变成判别代数式的符号。判断单调性的步骤:设x、x给定区间,且x0)的单调区间及单调性,并进行证明。2. f(x)axbxc的最小值的情况是怎样的?3.知识回顾:增函数、减函数的定义。二、讲授新课:1.教学函数最大(小)值的概念: 指出下列函数图象的最高点或最低点, 能体现函数值有什么特征?,;, 定义最大值:设函数y=f(x)的定义域为I,如果存在实数M满足:对于任意的xI,都有f(x)M;存在x0I,使得f(x0
18、) = M. 那么,称M是函数y=f(x)的最大值(Maximum Value) 探讨:仿照最大值定义,给出最小值(Minimum Value)的定义 一些什么方法可以求最大(小)值?(配方法、图象法、单调法) 试举例说明方法. 2、 例题讲解:例1求函数在区间2,6 上的最大值和最小值例2求函数的最大值 探究:的图象与的关系?(解法一:单调法; 解法二:换元法)三、巩固练习:1. 求下列函数的最大值和最小值:(1); (2)2.一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如右:欲使每天的的营业额最高,应如何定价?(分析变化规律建立函数模型求解最大值)房价(
19、元)住房率(%)160551406512075100853、 求函数的最小值.四、小结:求函数最值的常用方法有:(1)配方法:即将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的最值(2)换元法:通过变量式代换转化为求二次函数在某区间上的最值(3)数形结合法:利用函数图象或几何方法求出最值第八讲:函数的奇偶性一、复习准备:1.提问:什么叫增函数、减函数?2.指出f(x)2x1的单调区间及单调性。 变题:|2x1|的单调区间3.对于f(x)x、f(x)x、f(x)x、f(x)x,分别比较f(x)与f(x)。二、讲授新课:1.教学奇函数、偶函数的概念:给出两组图象:、;
20、、. 发现各组图象的共同特征 探究函数解析式在函数值方面的特征 定义偶函数:一般地,对于函数定义域内的任意一个x,都有,那么函数叫偶函数(even function). 探究:仿照偶函数的定义给出奇函数(odd function)的定义.(如果对于函数定义域内的任意一个x,都有),那么函数叫奇函数。 讨论:定义域特点?与单调性定义的区别?图象特点?(定义域关于原点对称;整体性) 练习:已知f(x)是偶函数,它在y轴左边的图像如图所示,画出它右边的图像。 (假如f(x)是奇函数呢?)1. 教学奇偶性判别:例1判断下列函数是否是偶函数(1)(2)例2判断下列函数的奇偶性(1) (2) (3) (4
21、) (5) (6)4、教学奇偶性与单调性综合的问题:出示例:已知f(x)是奇函数,且在(0,+)上是减函数,问f(x)的(-,0)上的单调性。找一例子说明判别结果(特例法) 按定义求单调性,注意利用奇偶性和已知单调区间上的单调性。 (小结:设转化单调应用奇偶应用结论)变题:已知f(x)是偶函数,且在a,b上是减函数,试判断f(x)在-b,-a上的单调性,并给出证明。三、巩固练习: 1、判别下列函数的奇偶性: f(x)|x1|+|x1| 、f(x)、f(x)x、 f(x)、f(x)x,x-2,32.设f(x)axbx5,已知f(7)17,求f(7)的值。3.已知f(x)是奇函数,g(x)是偶函数
22、,且f(x)g(x),求f(x)、g(x)。4.已知函数f(x),对任意实数x、y,都有f(x+y)f(x)f(y),试判别f(x)的奇偶性。(特值代入)5.已知f(x)是奇函数,且在3,7是增函数且最大值为4,那么f(x)在-7,-3上是( )函数,且最 值是 。四、小结本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质第九讲:函数的基本性质运用一、复习准备:1.讨论:如何从图象特征上得到奇函数
23、、偶函数、增函数、减函数、最大值、最小值?2.提问:如何从解析式得到奇函数、偶函数、增函数、减函数、最大值、最小值的定义?二、教学典型习例:1.函数性质综合题型:例1:作出函数yx2|x|3的图像,指出单调区间和单调性。分析作法:利用偶函数性质,先作y轴右边的,再对称作。思考:y|x2x3|的图像的图像如何作?讨论推广:如何由的图象,得到、的图象?出示例2:已知f(x)是奇函数,在(0,)上是增函数,证明:f(x)在(,0)上也是增函数 分析证法 教师板演 变式训练讨论推广:奇函数或偶函数的单调区间及单调性有何关系?(偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一
24、致)2. 教学函数性质的应用:出示例 :求函数f(x)x (x0)的值域。分析:单调性怎样?值域呢?小结:应用单调性求值域。 探究:计算机作图与结论推广出示例:某产品单价是120元,可销售80万件。市场调查后发现规律为降价x元后可多销售2x万件,写出销售金额y(万元)与x的函数关系式,并求当降价多少个元时,销售金额最大?最大是多少?分析:此题的数量关系是怎样的?函数呢?如何求函数的最大值?小结:利用函数的单调性(主要是二次函数)解决有关最大值和最大值问题。2.基本练习题:1、判别下列函数的奇偶性:y、 y (变式训练:f(x)偶函数,当x0时,f(x)=.,则x0时,f(x)=? )2、求函数yx的值域。3、判断函数y=单调区间并证明。 (定义法、图象法; 推广: 的单调性)4、讨论y=在-1,1上的单调性。 三、巩固练习: