圆锥曲线综合试题(全部大题目)含标准答案(共7页).doc

上传人:飞****2 文档编号:14963668 上传时间:2022-05-09 格式:DOC 页数:7 大小:1,006KB
返回 下载 相关 举报
圆锥曲线综合试题(全部大题目)含标准答案(共7页).doc_第1页
第1页 / 共7页
圆锥曲线综合试题(全部大题目)含标准答案(共7页).doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《圆锥曲线综合试题(全部大题目)含标准答案(共7页).doc》由会员分享,可在线阅读,更多相关《圆锥曲线综合试题(全部大题目)含标准答案(共7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上1.平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线外一点的任一直线与抛物线的两个交点为C、D,与抛物线切点弦AB的交点为Q。(1)求证:抛物线切点弦的方程为;(2)求证:.2.已知定点F(1,0),动点P在y轴上运动,过点P作PM交x轴于点M,并延长MP到点N,且(1)动点N的轨迹方程;(2)线l与动点N的轨迹交于A,B两点,若,求直线l的斜率k的取值范围.3.如图,椭圆的左右顶点分别为A、B,P为双曲线右支上(轴上方)一点,连AP交C1于C,连PB并延长交C1于D,且ACD与PCD的面积相等,求直线PD的斜率及直线CD的倾斜角.4.已知

2、点,动点满足条件.记动点的轨迹为.()求的方程;()若是上的不同两点,是坐标原点,求的最小值.5.已知曲线C的方程为:kx2+(4-k)y2=k+1,(kR) ()若曲线C是椭圆,求k的取值范围;()若曲线C是双曲线,且有一条渐近线的倾斜角是60,求此双曲线的方程;()满足()的双曲线上是否存在两点P,Q关于直线l:y=x-1对称,若存在,求出过P,Q的直线方程;若不存在,说明理由。6.如图(21)图,M(-2,0)和N(2,0)是平面上的两点,动点P满足:(1)求点P的轨迹方程;(2)若,求点P的坐标.7.已知为椭圆的右焦点,直线过点且与双曲线的两条渐进线分别交于点,与椭圆交于点.(I)若,

3、双曲线的焦距为4。求椭圆方程。(II)若(为坐标原点),求椭圆的离心率。8.设曲线(为正常数)与在轴上方只有一个公共点。()求实数的取值范围(用表示);()为原点,若与轴的负半轴交于点,当时,试求的面积的最大值(用表示)。1.(1)略xyO(2)为简化运算,设抛物线方程为,点的坐标分别为,点,直线,一方面。要证化斜为直后只须证:由于另一方面,由于所以切点弦方程为:所以从而即2. (1)设动点N的坐标为(x,y),则2分,因此,动点的轨迹方程为4分(2)设l与抛物线交于点A(x1,y1),B(x2,y2),当l与x轴垂直时,则由,不合题意,故与l与x轴不垂直,可设直线l的方程为y=kx+b(k0

4、),则由6分由点A,B在抛物线又y2=4x, y=kx+b得ky24y+4b=0,8分所以10分因为解得直线l的斜率的取值范围是.12分3.由题意得C为AP中点,设,把C点代入椭圆方程、P点代入双曲线方程可得解之得:故直线PD的斜率为,直线PD的方程为联立,故直线CD的倾斜角为904.解法一:()由|PM|PN|=知动点 P 的轨迹是以为焦点的双曲线的右支,实半轴长又半焦距 c=2,故虚半轴长所以 W 的方程为,()设 A,B 的坐标分别为, 当 ABx轴时,从而从而当AB与x轴不垂直时,设直线AB的方程为,与W的方程联立,消去y得故所以.又因为,所以,从而综上,当AB轴时, 取得最小值2.解

5、法二:()同解法一. ()设 A,B 的坐标分别为,则, ,则令则且所以当且仅当,即时”成立.所以的最小值是2.5. (1)当k=0或k=-1或k=4时,C表示直线;当k0且k-1且k4时方程为即是0k2或2k0,存在满足条件的P、Q,直线PQ的方程为6. (1)由椭圆的定义,点P的轨迹是以M、N为焦点,长轴长2a=6的椭圆.因此半焦距c=2,长半轴a=3,从而短半轴b=,所以椭圆的方程为 (2)由得因为不为椭圆长轴顶点,故P、M、N构成三角形.在PMN中,将代入,得故点P在以M、N为焦点,实轴长为的双曲线上.由(1)知,点P的坐标又满足,所以由方程组解得即P点坐标为7.解:(I),是直线与双曲线两条渐近线的交点,即2分双曲线的焦距为4,4分解得,椭圆方程为5分(II)解:设椭圆的焦距为,则点的坐标为,直线的斜率为,直线的斜率为,直线的方程为7分由解得即点设由,得即10分。点在椭圆上,12分,椭圆的离心率是。8.()由,设,则问题()转化为方程在区间上有唯一解:若,此时,当且仅当,即适合;若,则;若,此时,当且仅当,即时适合;若,此时,但,从而。综上所述,当时,或;当时,。()的面积是。因为,所以有两种情形:当时,由唯一性得。显然,当时,取得最小值,从而取得最大值,所以有;当时,此时。因此,有当,即时,;当,即时,。专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁