《八上-直角三角形全等的判定-同步练习(共5页).doc》由会员分享,可在线阅读,更多相关《八上-直角三角形全等的判定-同步练习(共5页).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上 直角三角形全等的判定 同步练习重点:掌握直角三角形全等的判定定理:斜边、直角边公理:斜边和一条直角边对应相等的两个直角三角形全等(HL)难点:创建全等条件与三角形中各定理联系解综合问题。讲一讲例1:已知:如图ABC中,BDAC,CEAB,BD、CE交于O点,且BD=CE求证:OB=OC.分析:欲证OB=OC可证明1=2,由已知发现,1,2均在直角三角形中,因此证明BCE与CBD全等即可证明:CEAB,BDAC,则BEC=CDB=90在RtBCE与RtCBD中RtBCERtCBD(HL)1=2,OB=OC例2:已知:RtABC中,ACB是直角,D是AB上一点,BD=B
2、C,过D作AB的垂线交AC于E,求证:CDBE分析:由已知可以得到DBE与BCE全等即可证明DE=EC又BD=BC,可知B、E在线段CD的中垂线上,故CDBE。证明:DEABBDE=90,ACB=90在RtDEB中与RtCEB中BD=BCBE=BERtDEBRtCEB(HL)DE=EC又BD=BCE、B在CD的垂直平分线上即BECD.例3:已知ABC中,CDAB于D,过D作DEAC,F为BC中点,过F作FGDC求证:DG=EG。分析:在RtDEC中,若能够证明G为DC中点则有DG=EG因此此题转化为证明DG与GC相等的问题,利用已知的众多条件可以通过直角三角形的全等得到。证明:作FQBD于Q,
3、FQB=90DEACDEC=90FGCD CDBD BD/FG,BDC=FGC=90QF/CDQF=DG,B=GFCF为BC中点BF=FC在RtBQF与RtFGC中BQFFGC(AAS)QF=GC QF=DG DG=GC在RtDEC中,G为DC中点DG=EG练一练1选择:(1)两个三角形的两条边及其中一条边的对角对应相等,则下列四个命题中,真命题的个数是( )个这两个三角形全等; 相等的角为锐角时全等相等的角为钝角对全等; 相等的角为直角时全等A0 B1 C2 D3(2)在下列定理中假命题是( )A一个等腰三角形必能分成两个全等的直角三角形B一个直角三角形必能分成两个等腰三角形C两个全等的直角
4、三角形必能拼成一个等腰三角形D两个等腰三角形必能拼成一个直角三角形(3)如图,RtABC中,B=90,ACB=60,延长BC到D,使CD=AC则AC:BD=( )A1:1 B3:1 C4:1 D2:3(4)如图,在RtABC中,ACB=90,CD、CE,分别是斜边AB上的高与中线,CF是ACB的平分线。则1与2的关系是( )A12 D不能确定(5)在直角三角形ABC中,若C=90,D是BC边上的一点,且AD=2CD,则ADB的度数是( )A30 B60 C120 D1502解答:(1)已知:如图B=E=90AC=DF FB=EC 求证:AB=DE.(2)已知:如图ABBD,CDBD,AB=DC
5、求证:AD/BC.(3)已知如图,ACBC,ADBD,AD=BC,CEAB,DFAB,垂足分别是E、F求证:CE=DF.参考答案(1)C; (2)D; (3)D设BC=x则AC=2x,CD=2x BD=3xAC:BD=2:3(4)BCE为ABC中线,AE=EC3=ACF平分ACBACF=FCB 即3+1=2+4CDAB,ACB=904=A3+1=2+A1=2(5)CADC=60ADB=1202(1)FB=CEBC=FE在RtABC与RtDEF中RtABCRtDEF(HL)AB=DE(2)ABBD CDBD ABD=BDC=90在RtABD与RtCDB中ABDCDB(SAS)ADB=DBCAD/BC(3)在RtACB与RtABD中RtACBRtBDF(HL)CAB=DBA,AC=BD在RtCAE与RtBDF中CAEBDF(AAS)CE=DF.专心-专注-专业